Show simple item record

dc.contributor.authorModenese, Luca
dc.contributor.authorGopalakrishnan, Ananthamaran
dc.contributor.authorT. M. Phillips, Andrew
dc.date.accessioned2018-11-09T12:32:59Z
dc.date.available2018-11-09T12:32:59Z
dc.date.issued2014
dc.identifier.issn1662-5188
dc.identifier.doi10.3389/fncom.2014.00153
dc.identifier.urihttp://hdl.handle.net/10072/67251
dc.description.abstractPrior experimental studies have hypothesized the existence of a "muscle synergy" based control scheme for producing limb movements and locomotion in vertebrates. Such synergies have been suggested to consist of fixed muscle grouping schemes with the co-activation of all muscles in a synergy resulting in limb movement. Quantitative representations of these groupings (termed muscle weightings) and their control signals (termed synergy controls) have traditionally been derived by the factorization of experimentally measured EMG. This study presents a novel approach for deducing these weightings and controls from inverse dynamic joint moments that are computed from an alternative set of experimental measurements-movement kinematics and kinetics. This technique was applied to joint moments for healthy human walking at 0.7 and 1.7 m/s, and two sets of "simulated" synergies were computed based on two different criteria (1) synergies were required to minimize errors between experimental and simulated joint moments in a musculoskeletal model (pure-synergy solution) (2) along with minimizing joint moment errors, synergies also minimized muscle activation levels (optimal-synergy solution). On comparing the two solutions, it was observed that the introduction of optimality requirements (optimal-synergy) to a control strategy solely aimed at reproducing the joint moments (pure-synergy) did not necessitate major changes in the muscle grouping within synergies or the temporal profiles of synergy control signals. Synergies from both the simulated solutions exhibited many similarities to EMG derived synergies from a previously published study, thus implying that the analysis of the two different types of experimental data reveals similar, underlying synergy structures.
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.format.extent3523974 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoeng
dc.publisherFrontiers Research Foundation
dc.publisher.placeSwitzerland
dc.relation.ispartofstudentpublicationN
dc.relation.ispartofpagefrom153-1
dc.relation.ispartofpageto153-15
dc.relation.ispartofjournalFrontiers in Computational Neuroscience
dc.relation.ispartofvolume8
dc.rights.retentionY
dc.subject.fieldofresearchNeurosciences not elsewhere classified
dc.subject.fieldofresearchClinical Sciences
dc.subject.fieldofresearchNeurosciences
dc.subject.fieldofresearchcode110999
dc.subject.fieldofresearchcode1103
dc.subject.fieldofresearchcode1109
dc.titleA novel computational framework for deducing muscle synergies from experimental joint moments
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.rights.copyright© 2014 Gopalakrishnan, Modenese and Phillips. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
gro.hasfulltextFull Text
gro.griffith.authorModenese, Luca


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record