A feature selection method using fixed-point algorithm for DNA microarray gene expression data
Author(s)
Sharma, A
Paliwal, KK
Imoto, S
Miyano, S
Sharma, V
Ananthanarayanan, R
Griffith University Author(s)
Year published
2014
Metadata
Show full item recordAbstract
As the performance of hardware is limited, the focus has been to develop objective, optimized and computationally efficient algorithms for a given task. To this extent, fixed-point and approximate algorithms have been developed and successfully applied in many areas of research. In this paper we propose a feature selection method based on fixed-point algorithm and show its application in the field of human cancer classification using DNA microarray gene expression data. In the fixed-point algorithm, we utilize between-class scatter matrix to compute the leading eigenvector. This eigenvector has been used to select genes. In ...
View more >As the performance of hardware is limited, the focus has been to develop objective, optimized and computationally efficient algorithms for a given task. To this extent, fixed-point and approximate algorithms have been developed and successfully applied in many areas of research. In this paper we propose a feature selection method based on fixed-point algorithm and show its application in the field of human cancer classification using DNA microarray gene expression data. In the fixed-point algorithm, we utilize between-class scatter matrix to compute the leading eigenvector. This eigenvector has been used to select genes. In the computation of the eigenvector, the eigenvalue decomposition of the scatter matrix is not required which significantly reduces its computational complexity and memory requirement.
View less >
View more >As the performance of hardware is limited, the focus has been to develop objective, optimized and computationally efficient algorithms for a given task. To this extent, fixed-point and approximate algorithms have been developed and successfully applied in many areas of research. In this paper we propose a feature selection method based on fixed-point algorithm and show its application in the field of human cancer classification using DNA microarray gene expression data. In the fixed-point algorithm, we utilize between-class scatter matrix to compute the leading eigenvector. This eigenvector has been used to select genes. In the computation of the eigenvector, the eigenvalue decomposition of the scatter matrix is not required which significantly reduces its computational complexity and memory requirement.
View less >
Journal Title
International Journal of Knowledge-Based and Intelligent Engineering Systems
Volume
18
Issue
1
Subject
Engineering