• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The flavonols quercetin and 3',4'-dihydroxyflavonol reduce platelet function and delay thrombus formation in a model of type 1 diabetes

    Author(s)
    Mosawy, Sapha
    Jackson, Denise E
    Woodman, Owen L
    Linden, Matthew D
    Griffith University Author(s)
    Mosawy, Sapha
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Diabetes is associated with increased cardiovascular risk. We have recently shown that the naturally occurring flavonol quercetin (Que) or the synthetic flavonol 3',4'-dihydroxyflavonol (DiOHF) inhibits platelet function and delays thrombus formation in healthy mice. Therefore, the aim of this study was to investigate the effect of Que or DiOHF treatment on platelet function and ferric chloride-induced carotid artery thrombosis in a mouse model of type 1 diabetes. Diabetic mice treated with Que or DiOHF maintained blood flow at a significantly higher level than untreated diabetic mice at the end of the recording period. In ...
    View more >
    Diabetes is associated with increased cardiovascular risk. We have recently shown that the naturally occurring flavonol quercetin (Que) or the synthetic flavonol 3',4'-dihydroxyflavonol (DiOHF) inhibits platelet function and delays thrombus formation in healthy mice. Therefore, the aim of this study was to investigate the effect of Que or DiOHF treatment on platelet function and ferric chloride-induced carotid artery thrombosis in a mouse model of type 1 diabetes. Diabetic mice treated with Que or DiOHF maintained blood flow at a significantly higher level than untreated diabetic mice at the end of the recording period. In addition, treatment with Que or DiOHF significantly reduced diabetes-induced platelet hyper-aggregability in response to platelet agonist stimulation. Furthermore, treatment with Que or DiOHF significantly inhibited dense, but not alpha, granule exocytosis in diabetic and control mice. Our demonstration that flavonols delay thrombus formation in diabetes suggests a potential clinical role for these compounds in anti-platelet therapy.
    View less >
    Journal Title
    Diabetes and Vascular Disease Research
    Volume
    11
    Issue
    3
    DOI
    https://doi.org/10.1177/1479164114524234
    Subject
    Cardiovascular medicine and haematology not elsewhere classified
    Clinical sciences
    Pharmacology and pharmaceutical sciences
    Medical physiology
    Publication URI
    http://hdl.handle.net/10072/67637
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander