• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • More efficient two-mode stochastic local search for random 3-satisfiability

    Author(s)
    Su, Kaile
    Luo, Chuan
    Cai, Shaowei
    Griffith University Author(s)
    Su, Kaile
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Stochastic local search (SLS) is a popular paradigm in incomplete solving for the Boolean satisfiability problem (SAT). Most SLS solvers for SAT switch between two modes, i.e., the greedy (intensification) mode and the diversification mode. However, the performance of these two-mode SLS algorithms lags far behind on solving random 3-satisfiability (3-SAT) problem, which is a significant special case of the SAT problem. In this paper, we propose a new hybrid scoring function called M C based on a linear combination of a greedy property m a k e and a diversification property C o n f T i m e s, and then utilize M C to develop ...
    View more >
    Stochastic local search (SLS) is a popular paradigm in incomplete solving for the Boolean satisfiability problem (SAT). Most SLS solvers for SAT switch between two modes, i.e., the greedy (intensification) mode and the diversification mode. However, the performance of these two-mode SLS algorithms lags far behind on solving random 3-satisfiability (3-SAT) problem, which is a significant special case of the SAT problem. In this paper, we propose a new hybrid scoring function called M C based on a linear combination of a greedy property m a k e and a diversification property C o n f T i m e s, and then utilize M C to develop a new two-mode SLS solver called CCMC. To evaluate the performance of CCMC, we conduct extensive experiments to compare CCMC with five state-of-the-art two-mode SLS solvers (i.e., Sparrow2011, Sattime2011, EagleUP, gNovelty+PCL and CCASat) on a broad range of random 3-SAT instances, including all large 3-SAT ones from SAT Competition 2009 and SAT Competition 2011 as well as 200 generated satisfiable huge random 3-SAT ones. The experiments illustrate that CCMC obviously outperforms its competitors, indicating the effectiveness of CCMC. We also analyze the effectiveness of the underlying ideas in CCMC and further improve the performance of CCMC on solving random 5-SAT instances.
    View less >
    Journal Title
    Applied Intelligence
    Volume
    41
    Issue
    3
    DOI
    https://doi.org/10.1007/s10489-014-0556-7
    Subject
    Artificial intelligence not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/67642
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander