Frontiers in the microbial processes of ammonia oxidation in soils and sediments
Abstract
Purpose Two recent discoveries in nitrogen (N) cycling processes, i.e., archaeal ammonia oxidizers and anaerobic ammonia (ammonium) oxidation (anammox), have triggered great interest in studying microbial ammonia oxidation processes. The purpose of this review is to highlight recent progress in ammonia oxidation processes in soils and sediments and to propose future research activities in this topic. Results and discussion Aerobic ammonia oxidation and anammox processes are linked through the production and consumption of nitrite, respectively, thereby removing the reactive N (NH4 +, NO2 -, NO3 -) from soil and sediment ...
View more >Purpose Two recent discoveries in nitrogen (N) cycling processes, i.e., archaeal ammonia oxidizers and anaerobic ammonia (ammonium) oxidation (anammox), have triggered great interest in studying microbial ammonia oxidation processes. The purpose of this review is to highlight recent progress in ammonia oxidation processes in soils and sediments and to propose future research activities in this topic. Results and discussion Aerobic ammonia oxidation and anammox processes are linked through the production and consumption of nitrite, respectively, thereby removing the reactive N (NH4 +, NO2 -, NO3 -) from soil and sediment ecosystems. Ammonia-oxidizing microorganisms are widely distributed in soils and sediments, and increasing evidence suggests that ammonia-oxidizing archaea and bacteria are functionally dominant in the ammonia oxidation of acid soils and other soils, respectively. The widespread occurrence and great variation in the abundance of anammox bacteria indicate their heterogeneous distribution and niche differentiation. Therefore, the worldwide distribution of both microbial groups in nature has stimulated researchers to investigate the physiology and metabolism of related groups, as well as appraising their contribution to N cycling. Conclusions We summarized the current progress and provided future perspectives in the microbiology of aerobic and anaerobic ammonia oxidation in soils and sediments. With increasing concern and interest in soil and sediment ammonia oxidation processes, studies in the microbial mechanisms underlying nitrification and anammox, as well as their interactions, are essential for understanding their contribution to the loss of N either through nitrate leaching or N-related gas emissions.
View less >
View more >Purpose Two recent discoveries in nitrogen (N) cycling processes, i.e., archaeal ammonia oxidizers and anaerobic ammonia (ammonium) oxidation (anammox), have triggered great interest in studying microbial ammonia oxidation processes. The purpose of this review is to highlight recent progress in ammonia oxidation processes in soils and sediments and to propose future research activities in this topic. Results and discussion Aerobic ammonia oxidation and anammox processes are linked through the production and consumption of nitrite, respectively, thereby removing the reactive N (NH4 +, NO2 -, NO3 -) from soil and sediment ecosystems. Ammonia-oxidizing microorganisms are widely distributed in soils and sediments, and increasing evidence suggests that ammonia-oxidizing archaea and bacteria are functionally dominant in the ammonia oxidation of acid soils and other soils, respectively. The widespread occurrence and great variation in the abundance of anammox bacteria indicate their heterogeneous distribution and niche differentiation. Therefore, the worldwide distribution of both microbial groups in nature has stimulated researchers to investigate the physiology and metabolism of related groups, as well as appraising their contribution to N cycling. Conclusions We summarized the current progress and provided future perspectives in the microbiology of aerobic and anaerobic ammonia oxidation in soils and sediments. With increasing concern and interest in soil and sediment ammonia oxidation processes, studies in the microbial mechanisms underlying nitrification and anammox, as well as their interactions, are essential for understanding their contribution to the loss of N either through nitrate leaching or N-related gas emissions.
View less >
Journal Title
Journal of Soils and Sediments
Volume
14
Subject
Soil Biology
Earth Sciences
Environmental Sciences
Agricultural and Veterinary Sciences