• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria

    Author(s)
    Todd, Jonathan D
    Curson, Andrew RJ
    Kirkwood, Mark
    Sullivan, Matthew J
    Green, Robert T
    Johnston, Andrew WB
    Griffith University Author(s)
    Sullivan, Matthew J.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Ruegeria (previously Silicibacter) pomeroyi DSS-3, a marine roseobacter, can catabolize dimethylsulfoniopropionate (DMSP), a compatible solute that is made in large amounts by marine plankton and algae. This strain was known to demethylate DMSP via a demethylase, encoded by the dmdA gene, and it can also cleave DMSP, releasing the environmentally important volatile dimethyl sulfide (DMS) in the process. We found that this strain has two different genes, dddP and dddQ, which encode enzymes that cleave DMSP, generating DMS plus acrylate. DddP had earlier been found in other roseobacters and is a member of the M24 family of ...
    View more >
    Ruegeria (previously Silicibacter) pomeroyi DSS-3, a marine roseobacter, can catabolize dimethylsulfoniopropionate (DMSP), a compatible solute that is made in large amounts by marine plankton and algae. This strain was known to demethylate DMSP via a demethylase, encoded by the dmdA gene, and it can also cleave DMSP, releasing the environmentally important volatile dimethyl sulfide (DMS) in the process. We found that this strain has two different genes, dddP and dddQ, which encode enzymes that cleave DMSP, generating DMS plus acrylate. DddP had earlier been found in other roseobacters and is a member of the M24 family of peptidases. The newly discovered DddQ polypeptide contains a predicted cupin metal-binding pocket, but has no other similarity to any other polypeptide with known function. DddP- and DddQ- mutants each produced DMS at significantly reduced levels compared with wild-type R. pomeroyi DSS-3, and transcription of the corresponding ddd genes was enhanced when cells were pre-grown with DMSP. Ruegeria pomeroyi DSS-3 also has a gene product that is homologous to DddD, a previously identified enzyme that cleaves DMSP, but which forms DMS plus 3-OH-propionate as the initial catabolites. However, mutations in this dddD-like gene did not affect DMS production, and it was not transcribed under our conditions. Another roseobacter strain, Roseovarius nubinhibens ISM, also contains dddP and has two functional copies of dddQ, encoded by adjacent genes. Judged by their frequencies in the Global Ocean Sampling metagenomic databases, DddP and DddQ are relatively abundant among marine bacteria compared with the previously identified DddL and DddD enzymes.
    View less >
    Journal Title
    Environmental Microbiology
    Volume
    13
    Issue
    2
    DOI
    https://doi.org/10.1111/j.1462-2920.2010.02348.x
    Subject
    Evolutionary biology
    Microbiology
    Microbial genetics
    Publication URI
    http://hdl.handle.net/10072/67766
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander