• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A New Wrist Vein Biometric System

    Author(s)
    Das, Abhijit
    Pal, Umapada
    Ferrer Ballester, Miguel Angel
    Blumenstein, Michael
    Griffith University Author(s)
    Blumenstein, Michael M.
    Das, Abhijit
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    In this piece of work a wrist vein pattern recognition and verification system is proposed. Here the wrist vein images from the PUT database were used, which were acquired in visible spectrum. The vein image only highlights the vein pattern area so, segmentation was not required. Since the wrist's veins are not prominent, image enhancement was performed. An Adaptive Histogram Equalization and Discrete Meyer Wavelet were used to enhance the vessel patterns. For feature extraction, the vein pattern is characterized with Dense Local Binary Pattern (D-LBP). D-LBP patch descriptors of each training image are used to form a bag ...
    View more >
    In this piece of work a wrist vein pattern recognition and verification system is proposed. Here the wrist vein images from the PUT database were used, which were acquired in visible spectrum. The vein image only highlights the vein pattern area so, segmentation was not required. Since the wrist's veins are not prominent, image enhancement was performed. An Adaptive Histogram Equalization and Discrete Meyer Wavelet were used to enhance the vessel patterns. For feature extraction, the vein pattern is characterized with Dense Local Binary Pattern (D-LBP). D-LBP patch descriptors of each training image are used to form a bag of features, which was used to produce the training model. Support Vector Machines (SVMs) were used for classification. An encouraging Equal Error Rate (EER) of 0.79% was achieved in our experiments.
    View less >
    Conference Title
    Computational Intelligence in Biometrics and Identity Management (CIBIM), 2014 IEEE Symposium on
    Publisher URI
    http://ieee-ssci.org/CIBIM.html
    DOI
    https://doi.org/10.1109/CIBIM.2014.7015445
    Subject
    Artificial Intelligence and Image Processing not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/67888
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander