SAT modulo graphs: Acyclicity
Author(s)
Gebser, Martin
Janhunen, Tomi
Rintanen, Jussi
Griffith University Author(s)
Year published
2014
Metadata
Show full item recordAbstract
Acyclicity is a recurring property of solutions to many important combinatorial problems. In this work we study embeddings of specialized acyclicity constraints in the satisfiability problem of the classical propositional logic (SAT). We propose an embedding of directed graphs in SAT, with arcs labelled with propositional variables, and an extended SAT problem in which all clauses have to be satisfied and the subgraph consisting of arcs labelled true is acyclic. We devise a constraint propagator for the acyclicity constraint and show how it can be incorporated in off-the-shelf SAT solvers. We show that all existing encodings ...
View more >Acyclicity is a recurring property of solutions to many important combinatorial problems. In this work we study embeddings of specialized acyclicity constraints in the satisfiability problem of the classical propositional logic (SAT). We propose an embedding of directed graphs in SAT, with arcs labelled with propositional variables, and an extended SAT problem in which all clauses have to be satisfied and the subgraph consisting of arcs labelled true is acyclic. We devise a constraint propagator for the acyclicity constraint and show how it can be incorporated in off-the-shelf SAT solvers. We show that all existing encodings of acyclicity constraints in SAT are either prohibitively large or do not sanction all inferences made by the constraint propagator. Our experiments demonstrate the advantages of our solver over other approaches for handling acyclicity.
View less >
View more >Acyclicity is a recurring property of solutions to many important combinatorial problems. In this work we study embeddings of specialized acyclicity constraints in the satisfiability problem of the classical propositional logic (SAT). We propose an embedding of directed graphs in SAT, with arcs labelled with propositional variables, and an extended SAT problem in which all clauses have to be satisfied and the subgraph consisting of arcs labelled true is acyclic. We devise a constraint propagator for the acyclicity constraint and show how it can be incorporated in off-the-shelf SAT solvers. We show that all existing encodings of acyclicity constraints in SAT are either prohibitively large or do not sanction all inferences made by the constraint propagator. Our experiments demonstrate the advantages of our solver over other approaches for handling acyclicity.
View less >
Conference Title
14th European Conference, JELIA 2014 Proceedings
Publisher URI
Subject
Artificial Intelligence and Image Processing not elsewhere classified