• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Initiation Processes in Copolymerisation Studied by the Nitroxide Radical-Trapping Technique: Ethyl Vinyl Ether and Acrylonitrile

    Author(s)
    Busfield, WK
    Jenkins, ID
    Monteiro, MJ
    Griffith University Author(s)
    Jenkins, Ian D.
    Busfield, Ken K.
    Monteiro, Michael J.
    Year published
    1997
    Metadata
    Show full item record
    Abstract
    The nitroxide free-radical trapping technique has been applied to an investigation of the initiation mechanism of the copolymerization of ethyl vinyl ether and acrylonitrile initiated by t-butoxyl radicals. In addition to a range of products normally produced from reactions with individual monomers, four new trapped products each involving both monomers have been observed. These arise because the strongly electron-accepting acrylonitrile reacts so fast with the strongly nucleophilic ethyl vinyl ether radical end groups that the reaction competes successfully with radical trapping. t-Butoxyl radicals react 3-6 times faster ...
    View more >
    The nitroxide free-radical trapping technique has been applied to an investigation of the initiation mechanism of the copolymerization of ethyl vinyl ether and acrylonitrile initiated by t-butoxyl radicals. In addition to a range of products normally produced from reactions with individual monomers, four new trapped products each involving both monomers have been observed. These arise because the strongly electron-accepting acrylonitrile reacts so fast with the strongly nucleophilic ethyl vinyl ether radical end groups that the reaction competes successfully with radical trapping. t-Butoxyl radicals react 3-6 times faster with ethyl vinyl ether than with acrylonitrile depending on solvent, illustrating the strong electrophilic nature of the t-butoxyl radicals. Reactions carried out in non-olefinic solvents show that polarity is not a major factor in the solvent et. It is more likely to be due to selective interaction of one monomer with the radical end enhancing its electrophilic nature. A similar et is caused by a hydrogen-bonding solvent.
    View less >
    Journal Title
    Australian Journal of Chemistry
    Volume
    50
    DOI
    https://doi.org/10.1071/C96016
    Subject
    Chemical sciences
    Publication URI
    http://hdl.handle.net/10072/68089
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander