• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Genetic algorithm for an optimized weighted voting scheme incorporating k-separated bigram transition probabilities to improve protein fold recognition

    Thumbnail
    View/Open
    101874_1.pdf (529.3Kb)
    Author(s)
    Saini, Harsh
    Raicar, Gaurav
    Lal, Sunil
    Dehzangi, Abdollah
    Lyons, James
    Paliwal, Kuldip K
    Imoto, Seiya
    Miyano, Satoru
    Sharma, Alok
    Griffith University Author(s)
    Paliwal, Kuldip K.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    In biology, identifying the tertiary structure of a protein helps determine its functions. A step towards tertiary structure identification is predicting a protein's fold. Computational methods have been applied to determine a protein's fold by assembling information from its structural, physicochemical and/or evolutionary properties. It has been shown that evolutionary data helps improve prediction accuracy. In this study, a scheme is proposed that uses the genetic algorithm (GA) to optimize a weighted voting system to improve protein fold recognition. This scheme incorporates k-separated bigram transition probabilities for ...
    View more >
    In biology, identifying the tertiary structure of a protein helps determine its functions. A step towards tertiary structure identification is predicting a protein's fold. Computational methods have been applied to determine a protein's fold by assembling information from its structural, physicochemical and/or evolutionary properties. It has been shown that evolutionary data helps improve prediction accuracy. In this study, a scheme is proposed that uses the genetic algorithm (GA) to optimize a weighted voting system to improve protein fold recognition. This scheme incorporates k-separated bigram transition probabilities for feature extraction, which are based on the Position Specific Scoring Matrix (PSSM). A set of SVM classifiers are used for initial classification, whereupon their predictions are consolidated using the optimized weighted voting system. This scheme has been demonstrated on the Ding and Dubchak (DD) benchmarked data set.
    View less >
    Conference Title
    2014 ASIA-PACIFIC WORLD CONGRESS ON COMPUTER SCIENCE AND ENGINEERING (APWC ON CSE)
    Publisher URI
    http://i-lab.org.au/conference/
    DOI
    https://doi.org/10.1109/APWCCSE.2014.7053846
    Copyright Statement
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Pattern Recognition and Data Mining
    Publication URI
    http://hdl.handle.net/10072/68542
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander