Genetic algorithm for an optimized weighted voting scheme incorporating k-separated bigram transition probabilities to improve protein fold recognition

View/ Open
Author(s)
Saini, Harsh
Raicar, Gaurav
Lal, Sunil
Dehzangi, Abdollah
Lyons, James
Paliwal, Kuldip K
Imoto, Seiya
Miyano, Satoru
Sharma, Alok
Griffith University Author(s)
Year published
2014
Metadata
Show full item recordAbstract
In biology, identifying the tertiary structure of a protein helps determine its functions. A step towards tertiary structure identification is predicting a protein's fold. Computational methods have been applied to determine a protein's fold by assembling information from its structural, physicochemical and/or evolutionary properties. It has been shown that evolutionary data helps improve prediction accuracy. In this study, a scheme is proposed that uses the genetic algorithm (GA) to optimize a weighted voting system to improve protein fold recognition. This scheme incorporates k-separated bigram transition probabilities for ...
View more >In biology, identifying the tertiary structure of a protein helps determine its functions. A step towards tertiary structure identification is predicting a protein's fold. Computational methods have been applied to determine a protein's fold by assembling information from its structural, physicochemical and/or evolutionary properties. It has been shown that evolutionary data helps improve prediction accuracy. In this study, a scheme is proposed that uses the genetic algorithm (GA) to optimize a weighted voting system to improve protein fold recognition. This scheme incorporates k-separated bigram transition probabilities for feature extraction, which are based on the Position Specific Scoring Matrix (PSSM). A set of SVM classifiers are used for initial classification, whereupon their predictions are consolidated using the optimized weighted voting system. This scheme has been demonstrated on the Ding and Dubchak (DD) benchmarked data set.
View less >
View more >In biology, identifying the tertiary structure of a protein helps determine its functions. A step towards tertiary structure identification is predicting a protein's fold. Computational methods have been applied to determine a protein's fold by assembling information from its structural, physicochemical and/or evolutionary properties. It has been shown that evolutionary data helps improve prediction accuracy. In this study, a scheme is proposed that uses the genetic algorithm (GA) to optimize a weighted voting system to improve protein fold recognition. This scheme incorporates k-separated bigram transition probabilities for feature extraction, which are based on the Position Specific Scoring Matrix (PSSM). A set of SVM classifiers are used for initial classification, whereupon their predictions are consolidated using the optimized weighted voting system. This scheme has been demonstrated on the Ding and Dubchak (DD) benchmarked data set.
View less >
Conference Title
2014 ASIA-PACIFIC WORLD CONGRESS ON COMPUTER SCIENCE AND ENGINEERING (APWC ON CSE)
Publisher URI
Copyright Statement
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subject
Pattern Recognition and Data Mining