• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Cluster-based lognormal distribution model for accident duration

    Author(s)
    Weng, Jinxian
    Qiao, Wenxin
    Qu, Xiaobo
    Yan, Xuedong
    Griffith University Author(s)
    Qu, Xiaobo
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    This study develops a cluster-based lognormal distribution model for the purpose of predicting accident duration. With Maryland I-95 freeway traffic accident data collected in 2010 and 2011, this study first uses a decision tree approach to split the entire sample data into three clusters which are then treated as additional variables in modelling accident duration. The results show that seven explanatory variables and cluster variables significantly affect the mean accident duration. With the cluster-based lognormal distribution model, the mean and the probability of an accident duration being unacceptable can be predicted ...
    View more >
    This study develops a cluster-based lognormal distribution model for the purpose of predicting accident duration. With Maryland I-95 freeway traffic accident data collected in 2010 and 2011, this study first uses a decision tree approach to split the entire sample data into three clusters which are then treated as additional variables in modelling accident duration. The results show that seven explanatory variables and cluster variables significantly affect the mean accident duration. With the cluster-based lognormal distribution model, the mean and the probability of an accident duration being unacceptable can be predicted from the base accident information. Such predictions can be utilised as a basis for making rational diversion in the event of an accident, which will help mitigate traffic congestion and improve travel time reliability.
    View less >
    Journal Title
    Transportmetrica A: Transport Science
    Volume
    11
    Issue
    4
    DOI
    https://doi.org/10.1080/23249935.2014.994687
    Subject
    Civil engineering
    Transport planning
    Transportation, logistics and supply chains
    Publication URI
    http://hdl.handle.net/10072/69222
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander