Show simple item record

dc.contributor.authorGunalan, Shanmuganathan
dc.contributor.authorMahendran, Mahen
dc.date.accessioned2017-05-03T16:18:27Z
dc.date.available2017-05-03T16:18:27Z
dc.date.issued2014
dc.identifier.issn0734-9041
dc.identifier.doi10.1177/0734904113488336
dc.identifier.urihttp://hdl.handle.net/10072/69235
dc.description.abstractLight gauge steel frame (LSF) wall systems are commonly used in industrial and commercial buildings and there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the LSF wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the studs. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of LSF wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strength of wall studs and the failure times. The measured time-temperature profiles in the fire tests were used in all the calculations. Suitable modifications were then proposed to the fire design rules. This paper presents the details of this investigation on the fire design rules of LSF walls and the results.
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.format.extent1321549 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoeng
dc.publisherSage Publications
dc.publisher.placeUnited Kingdom
dc.relation.ispartofstudentpublicationN
dc.relation.ispartofpagefrom3
dc.relation.ispartofpageto34
dc.relation.ispartofissue1
dc.relation.ispartofjournalJournal of Fire Sciences
dc.relation.ispartofvolume32
dc.rights.retentionY
dc.subject.fieldofresearchStructural engineering
dc.subject.fieldofresearchMaterials engineering
dc.subject.fieldofresearchcode400510
dc.subject.fieldofresearchcode4016
dc.titleReview of Current Fire Design Rules for Cold-formed Steel Wall Systems
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.rights.copyright© 2014 SAGE Publications. This is the author-manuscript version of the paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
gro.hasfulltextFull Text
gro.griffith.authorGunalan, Shanmuganathan (Guna)


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record