• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Adhesion molecules from the diatom Phaeodactylum tricornutum (Bacillariophyceae): genomic identification by amino‐acid profiling and in vivo analysis

    Author(s)
    Willis, A
    Eason-Hubbard, M
    Hodson, O
    Maheswari, U
    Bowler, C
    Wetherbee, R
    Griffith University Author(s)
    Willis, Anusuya
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Cell adhesion molecules (CAMs) are important in prokaryotes and eukaryotes for cell-cell and cell-substratum interactions. The characteristics of adhesive proteins in the model diatom Phaeodactylum tricornutum were investigated by bioinformatic analysis and in vivo characterization. Bioinformatic analysis of the protein coding potential of the P. tricornutum genome used an amino-acid profile that we developed as a new system to identify uncharacterized or novel CAMs. Putative diatom CAMs were identified and seven were characterized in vivo, by generation of transgenic diatom lines overexpressing genes encoding C-terminal ...
    View more >
    Cell adhesion molecules (CAMs) are important in prokaryotes and eukaryotes for cell-cell and cell-substratum interactions. The characteristics of adhesive proteins in the model diatom Phaeodactylum tricornutum were investigated by bioinformatic analysis and in vivo characterization. Bioinformatic analysis of the protein coding potential of the P. tricornutum genome used an amino-acid profile that we developed as a new system to identify uncharacterized or novel CAMs. Putative diatom CAMs were identified and seven were characterized in vivo, by generation of transgenic diatom lines overexpressing genes encoding C-terminal yellow fluorescent protein (YFP) fusion proteins. Three of these selected genes encode proteins with weak similarity to characterized proteins, a c-type lectin and two fasciclins, whereas the others are novel. The resultant cell lines were investigated for alterations in their adhesive ability. Whole cell-substratum adhesion strength was measured in a fully turbulent flow chamber, while atomic force microscopy was used to quantify the relative frequency of adhesion, as well as the length and strength of single molecules in the secreted mucilage. Finally, quartz crystal microbalance analysis characterized the visco-elastic properties and interaction of the mucilage-substratum interface. These combined studies revealed a range of phenotypes affecting adhesion, and led to the identification of candidate proteins involved in diatom adhesion. In summary, our study has for the first time combined bioinformatics and molecular physiological studies to provide new insights into diatom adhesive molecules.
    View less >
    Journal Title
    Journal of Phycology
    Volume
    50
    DOI
    https://doi.org/10.1111/jpy.12214
    Subject
    Plant biology
    Other biological sciences not elsewhere classified
    Fisheries sciences
    Publication URI
    http://hdl.handle.net/10072/69283
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander