• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • System size effects on calculation of the viscosity of extended molecules

    Author(s)
    Bernardi, Stefano
    Brookes, Sarah
    J. Searles, Debra
    Griffith University Author(s)
    Brookes, Sarah
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    We consider finite size effects on calculation of the viscosity of bulk molecular fluids using molecular dynamics simulations. The results are obtained using equilibrium simulations, direct calculations from nonequilibrium molecular dynamics simulations and calculations of the transient time correlation function expression, based on the dissipation theorem for nonlinear response. As with atomic fluids, strain induced by the periodic boundary conditions on the molecular systems can become significant for small systems at high densities and low temperatures. It addition to this effect, the dissipation function has a finite ...
    View more >
    We consider finite size effects on calculation of the viscosity of bulk molecular fluids using molecular dynamics simulations. The results are obtained using equilibrium simulations, direct calculations from nonequilibrium molecular dynamics simulations and calculations of the transient time correlation function expression, based on the dissipation theorem for nonlinear response. As with atomic fluids, strain induced by the periodic boundary conditions on the molecular systems can become significant for small systems at high densities and low temperatures. It addition to this effect, the dissipation function has a finite size contribution below a critical size, and this becomes more important as the system size is reduced and the length of the molecule increases. In this paper we show how calculations can be carried out to obtain convergence to bulk values with limited system size simulations.
    View less >
    Journal Title
    Chemical Engineering Science
    Volume
    121
    DOI
    https://doi.org/10.1016/j.ces.2014.08.040
    Subject
    Statistical Mechanics in Chemistry
    Chemical Engineering
    Mechanical Engineering
    Resources Engineering and Extractive Metallurgy
    Publication URI
    http://hdl.handle.net/10072/69342
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander