• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Piece-Wise Linearity Based Method for Text Frame Classication in Video

    Thumbnail
    View/Open
    101868_1.pdf (1.861Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Sharma, Nabin
    Shivakumara, Palaiahnakote
    Pal, Umapada
    Blumenstein, Michael
    Tan, Chew Lim
    Griffith University Author(s)
    Blumenstein, Michael M.
    Sharma, Nabin
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    The aim of text frame classification technique is to label a video frame as text or non-text before text detection and recognition. It is an essential step prior to text detection because text detection methods assume the input to be a text frame. Consequently, when a non-text frame is subjected to text detection, the precision of the text detection method decreases because of false positives. In this paper a new text frame classification approach based on component linearity is proposed. The method firstly obtains probable text clusters from the gradient values of the RGB images of an input video frame. The Sobel edges ...
    View more >
    The aim of text frame classification technique is to label a video frame as text or non-text before text detection and recognition. It is an essential step prior to text detection because text detection methods assume the input to be a text frame. Consequently, when a non-text frame is subjected to text detection, the precision of the text detection method decreases because of false positives. In this paper a new text frame classification approach based on component linearity is proposed. The method firstly obtains probable text clusters from the gradient values of the RGB images of an input video frame. The Sobel edges corresponding to the text cluster are then extracted and used for further processing. Next, the method proposes to eliminate false text components before undertaking a linearity check where the linearity of the text components is determined using their centroids in a piece-wise manner. If the components in a frame satisfy the defined linearity condition, then the frame is considered as a text frame; otherwise it is considered as a non-text frame. The proposed method has been tested on standard text and non-text datasets of different orientations to demonstrate that it is independent of orientation. A comparative study with the existing method shows that the proposed method is superior in terms of classification rate and processing time.
    View less >
    Journal Title
    Pattern Recognition
    Volume
    48
    Issue
    3
    DOI
    https://doi.org/10.1016/j.patcog.2014.09.012
    Copyright Statement
    © 2015 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Image processing
    Information systems
    Publication URI
    http://hdl.handle.net/10072/69621
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander