• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Spatial and temporal dynamics of forest aboveground carbon stocks in response to climate and environmental changes

    Author(s)
    Fu, Li
    Zhao, Yan
    Xu, Zhihong
    Wu, Bingfang
    Griffith University Author(s)
    Xu, Zhihong
    Fu, Li
    Zhao, Yan
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Purpose Climate change, especially global warming due to rising atmospheric carbon dioxide (CO2) concentration, has attracted much attention in the past century. Increasing efforts have been made to find solutions to mitigate the CO2 emission and sequester the existing CO2 in the atmosphere into land-based ecosystems. Forest ecosystems are the best effective way to fix the atmospheric CO2 by photosynthesis and allocate to tree biomass and into soils. Meanwhile, trees or forests will also respond to gradually increasing CO2 concentration and environment changes. It is important to quantify the dynamic interaction between the ...
    View more >
    Purpose Climate change, especially global warming due to rising atmospheric carbon dioxide (CO2) concentration, has attracted much attention in the past century. Increasing efforts have been made to find solutions to mitigate the CO2 emission and sequester the existing CO2 in the atmosphere into land-based ecosystems. Forest ecosystems are the best effective way to fix the atmospheric CO2 by photosynthesis and allocate to tree biomass and into soils. Meanwhile, trees or forests will also respond to gradually increasing CO2 concentration and environment changes. It is important to quantify the dynamic interaction between the changing environment and activities of carbon (C) accumulation by forests with a proper method and also assess the status of the forest C stocks in response to climate and environmental changes. Results and discussion Estimation of forest aboveground C stock still experiences much uncertainty, even for the same forest ecosystem such as in the tropics, due to the different methods used. Most of the work has been based on inventory data and allometric equations to estimate biomass and calculate C stock by multiplying a C content coefficient. Great uncertainties exist because of the representativeness of the allometric equations, the differences in C content for different tree species, and the spatial heterogeneous nature of C distribution in the forest ecosystems. The development of remote sensing has stimulated applications of the technology in estimating forest aboveground C stocks at a larger scale. Remote sensing can reduce the uncertainty of spatial variations caused by extrapolation with the inventory methods, but it has the limitation of lacking the ability to express the processes involved in C accumulation and their responses to the changing environment. Tree growth and climate change information embedded in tree rings can be a good supplement to interpret the results acquired by the remote sensing technique. Conclusions and perspectives The application of remote sensing techniques offers a practical method for C stock estimates in forest ecosystems in the context of spatial variations. However, the long-term responses of forest C accumulation to the gradually changing environment and climate are still not well understood. Integrated study of combining remote sensing and ecological research techniques in forest ecosystems is necessary for future study to explore the mechanisms of interaction between forest development and the gradual changing environment and also to assess the C sequestration status and potential of forest ecosystems under climate change.
    View less >
    Journal Title
    Journal of Soils and Sediments
    Volume
    15
    Issue
    2
    DOI
    https://doi.org/10.1007/s11368-014-1050-x
    Subject
    Earth sciences
    Environmental sciences
    Ecological impacts of climate change and ecological adaptation
    Agricultural, veterinary and food sciences
    Publication URI
    http://hdl.handle.net/10072/69623
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander