• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Transformations for evaluating singular boundary element integrals

    Thumbnail
    View/Open
    19266_1.pdf (258.4Kb)
    Author(s)
    Johnston, PR
    Elliott, D
    Griffith University Author(s)
    Johnston, Peter R.
    Year published
    2002
    Metadata
    Show full item record
    Abstract
    Accurate numerical integration of line integrals is of fundamental importance for the reliable implementation of the boundary element method. Usually, the regular integrals arising from a boundary element method implementation are evaluated using standard Gaussian quadrature. However, the singular integrals which arise are often evaluated in another way, sometimes using a different integration method with different nodes and weights. This paper presents a straightforward transformation to improve the accuracy of evaluating singular integrals. The transformation is, in a sense, a generalisation of the popular method of ...
    View more >
    Accurate numerical integration of line integrals is of fundamental importance for the reliable implementation of the boundary element method. Usually, the regular integrals arising from a boundary element method implementation are evaluated using standard Gaussian quadrature. However, the singular integrals which arise are often evaluated in another way, sometimes using a different integration method with different nodes and weights. This paper presents a straightforward transformation to improve the accuracy of evaluating singular integrals. The transformation is, in a sense, a generalisation of the popular method of Telles with the underlying idea being to utilise the same Gaussian quadrature points as used for evaluating nonsingular integrals in a typical boundary element method implementation. The new transformation is also shown to be equivalent to other existing transformations in certain situations. Comparison of the new method with existing coordinate transformation techniques shows that a more accurate evaluation of weakly singular integrals can be obtained. The technique can also be extended to evaluate certain Hadamard finite-part integrals. Based on the observation of several integrals considered, guidelines are suggested for the best transformation order to use (i.e. the degree to which nodes should be clustered near the singular point).
    View less >
    Journal Title
    Journal of Computational and Applied Mathematics
    Volume
    146
    Publisher URI
    http://www.elsevier.com/wps/find/journaldescription.cws_home/505613/description#description
    DOI
    https://doi.org/10.1016/S0377-0427(02)00357-6
    Copyright Statement
    © 2002 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Applied mathematics
    Numerical and computational mathematics
    Publication URI
    http://hdl.handle.net/10072/6996
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander