• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Interrogation of the dynamics of magnetic microbeads on the meso-scale via electromagnetic detection

    Author(s)
    Myhra, Sverre
    D. V. Nicolau, D. Jr.
    Nicolau, D.
    Fulga, F.
    Griffith University Author(s)
    Myhra, Sverre
    Year published
    2002
    Metadata
    Show full item record
    Abstract
    Hybrid devices based on wholly bio-organic systems being interfaced with wholly inorganic systems are now being conceived of and constructed. A hypothetical device is likely to have some dynamic attributes and its dimensions will optimally be comparable with those of the current state of the art in microfabrication. While there are many established methods for interrogating the organic system in the laboratory, and thus extract information, few of those are compatible with micro/nano-technological integration. If magnetic dipoles can be incorporated into the biosystem, then there are a number of methods for non-intrusive ...
    View more >
    Hybrid devices based on wholly bio-organic systems being interfaced with wholly inorganic systems are now being conceived of and constructed. A hypothetical device is likely to have some dynamic attributes and its dimensions will optimally be comparable with those of the current state of the art in microfabrication. While there are many established methods for interrogating the organic system in the laboratory, and thus extract information, few of those are compatible with micro/nano-technological integration. If magnetic dipoles can be incorporated into the biosystem, then there are a number of methods for non-intrusive interrogation (i.e. compatible with device functionality). Several such methods are discussed, and typical signal strengths are estimated for generic configurations. The most promising avenues arise either from detection of multiple parallel events, or from deployment of a scaled-down version of the well known vibrating loop method.
    View less >
    Journal Title
    Smart Materials and Structures
    Volume
    11
    DOI
    https://doi.org/10.1088/0964-1726/11/5/315
    Subject
    Chemical Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/7022
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander