• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Optically Transparent Frequency Selective Surfaces on Flexible Thin Plastic Substrates

    Thumbnail
    View/Open
    105538_1.pdf (361.3Kb)
    Author(s)
    Dewani, Aliya A
    O'Keefe, Steven G
    Thiel, David V
    Galehdar, Amir
    Griffith University Author(s)
    Thiel, David V.
    O'Keefe, Steven G.
    Mohammadzadeh Galehdar, Amir A.
    Dewani, Aliya Ashraf
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the ...
    View more >
    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.
    View less >
    Journal Title
    AIP Advances
    Volume
    5
    DOI
    https://doi.org/10.1063/1.4907929
    Copyright Statement
    © The Author(s) 2015. For information about this journal please refer to the publisher’s website or contact the author[s]. Articles are licensed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) license (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Electrical and Electronic Engineering not elsewhere classified
    Optical Physics
    Quantum Physics
    Electrical and Electronic Engineering
    Publication URI
    http://hdl.handle.net/10072/75451
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander