Show simple item record

dc.contributor.authorYu, Jimmyen_US
dc.contributor.authorXu, Hongen_US
dc.contributor.authorWilliams, Philipen_US
dc.description.abstractBiofilm (or attached growth) reactors can be effectively used to treat organic wastewater from various industries such as food processing industry. They have a number of advantages including high organic loading rates (OLRs) and improved operational stability. A flexible fibre biofim reactor (FFBR) has been developed for efficient and cost effective treatment of food processing wastewater. In the process, simple flexible fibre packing with a very high specific surface area is used as support for microorganisms. The COD removal efficiencies for a range of OLRs have been studied. The FFBR can support an increasingly high OLR, but with a corresponding decrease in the COD removal efficiency. Therefore, a two-stage FFBR was developed to increase the treatment efficiency for systems with high OLRs. Experimental results indicated that a high overall COD removal efficiency could be achieved. At an influent COD of about 2700 mg/L and an OLR of 7.7 kgCOD/m3d, COD removal efficiencies of 76% and 82% were achieved in the first and the second stage of the reactor, respectively. The overall COD removal efficiency was 96%. Therefore, even for wastewater samples with high organic strength, high quality treated effluents could be readily achieved by the use of multiple stage FFBRs.en_US
dc.publisherIWA Publishingen_US
dc.relation.ispartofjournalWater Science and Technologyen_US
dc.titleDevelopment of a two-stage flexible fibre biofilm reactor for treatment of food processing wastewateren_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
gro.rights.copyrightCopyright IWA Publishing 2003. The definitive peer-reviewed and edited version of this article is published in Water Science and Technology, 47, 11, 189-194, 2003 and is available at www.iwapublishing.comen_AU
gro.hasfulltextNo Full Text

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record