• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Experimental observation of the elusive double-peak structure in R-dependent strong-field ionization rate of H2+

    Thumbnail
    View/Open
    105521_1.pdf (961.4Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Xu, Han
    He, Feng
    Kielpinski, D
    Sang, RT
    Litvinyuk, IV
    Griffith University Author(s)
    Sang, Robert T.
    Litvinyuk, Igor
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    When a diatomic molecule is ionized by an intense laser field, the ionization rate depends very strongly on the inter-nuclear separation. That dependence exhibits a pronounced maximum at the inter-nuclear separation known as the "critical distance". This phenomenon was first demonstrated theoretically in H2+ and became known as "charge-resonance enhanced ionization" (CREI, in reference to a proposed physical mechanism) or simply "enhanced ionization"(EI). All theoretical models of this phenomenon predict a double-peak structure in the R-dependent ionization rate of H2+. However, such double-peak structure has never been ...
    View more >
    When a diatomic molecule is ionized by an intense laser field, the ionization rate depends very strongly on the inter-nuclear separation. That dependence exhibits a pronounced maximum at the inter-nuclear separation known as the "critical distance". This phenomenon was first demonstrated theoretically in H2+ and became known as "charge-resonance enhanced ionization" (CREI, in reference to a proposed physical mechanism) or simply "enhanced ionization"(EI). All theoretical models of this phenomenon predict a double-peak structure in the R-dependent ionization rate of H2+. However, such double-peak structure has never been observed experimentally. It was even suggested that it is impossible to observe due to fast motion of the nuclear wavepackets. Here we report a few-cycle pump-probe experiment which clearly resolves that elusive double-peak structure. In the experiment, an expanding H2+ ion produced by an intense pump pulse is probed by a much weaker probe pulse. The predicted double-peak structure is clearly seen in delay dependent kinetic energy spectra of protons when pump and probe pulses are polarized parallel to each other. No structure is seen when the probe is polarized perpendicular to the pump.
    View less >
    Journal Title
    Scientific Reports
    Volume
    5
    DOI
    https://doi.org/10.1038/srep13527
    Copyright Statement
    © The Author(s) 2015. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
    Subject
    Atomic and molecular physics
    Publication URI
    http://hdl.handle.net/10072/81350
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander