• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Photocatalytic and photoelectrocatalytic degradation of small biological compounds at TiO2 photoanode: A case study of nucleotide bases

    Author(s)
    Li, Guiying
    Liu, Xiaolu
    An, Taicheng
    Yang, Hai
    Zhang, Shanqing
    Zhao, Huijun
    Griffith University Author(s)
    Zhao, Huijun
    Zhang, Shanqing
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Photocatalytic (PC) and photoelectrocatalytic (PEC) degradation of small biological compounds such as nucleotide bases were carried out because of the nucleotide bases are the building blocks of large biomolecules, nucleic acids. These small biological compounds, four different nucleotide bases, can be photocatalytically and photoelectrocatalytically degradable, and the degradation efficiencies of PEC method were found to be higher than those of PC method for all compounds investigated. Also, we tried to propose the photocatalytical and photoelectrocatalytic degradation mechanisms of nucleotide bases, but the performance was ...
    View more >
    Photocatalytic (PC) and photoelectrocatalytic (PEC) degradation of small biological compounds such as nucleotide bases were carried out because of the nucleotide bases are the building blocks of large biomolecules, nucleic acids. These small biological compounds, four different nucleotide bases, can be photocatalytically and photoelectrocatalytically degradable, and the degradation efficiencies of PEC method were found to be higher than those of PC method for all compounds investigated. Also, we tried to propose the photocatalytical and photoelectrocatalytic degradation mechanisms of nucleotide bases, but the performance was unsuccessful. However, organic nitrogen in the original compounds was found to be oxidized to either NH3/NH4+ or NO3− or both, depending on the chemical structures of the nucleotide bases and the degradation methods used. Based on both the experimental results and the theoretically calculated frontier electron densities (FED) values of 2FEDHOMO2 and FEDHOMO2 + FEDLUMO2, the conclusion can be demonstrated as the reaction mechanisms/pathways of PEC processes differed remarkably from that of PC processes.
    View less >
    Journal Title
    Catalysis Today
    Volume
    242
    Issue
    Part B
    DOI
    https://doi.org/10.1016/j.cattod.2014.04.029
    Subject
    Chemical sciences
    Inorganic green chemistry
    Solid state chemistry
    Electrochemistry
    Engineering
    Publication URI
    http://hdl.handle.net/10072/84095
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander