NUMERICAL STABILITY AND ACCURACY OF THE SCALED BOUNDARY FINITE ELEMENT METHOD IN ENGINEERING APPLICATIONS

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Li, Miao
Zhang, Yong
Zhang, Hong
Guan, Hong
Year published
2015
Metadata
Show full item recordAbstract
The scaled boundary finite element method (SBFEM) is a semi-analytical computational method initially developed in the 1990s. It has been widely applied in the fields of solid mechanics, oceanic, geotechnical, hydraulic, electromagnetic and acoustic engineering problems. Most of the published work on SBFEM has focused on its theoretical development and practical applications, but, so far, no explicit discussion on the numerical stability and accuracy of its solution has been systematically documented. However, for a reliable engineering application, the inherent numerical problems associated with SBFEM solution procedures ...
View more >The scaled boundary finite element method (SBFEM) is a semi-analytical computational method initially developed in the 1990s. It has been widely applied in the fields of solid mechanics, oceanic, geotechnical, hydraulic, electromagnetic and acoustic engineering problems. Most of the published work on SBFEM has focused on its theoretical development and practical applications, but, so far, no explicit discussion on the numerical stability and accuracy of its solution has been systematically documented. However, for a reliable engineering application, the inherent numerical problems associated with SBFEM solution procedures require thorough analysis in terms of its causes and the corresponding remedies. This study investigates the numerical performance of SBFEM with respect to matrix manipulation techniques and their properties. Some illustrative examples are given to identify reasons for possible numerical difficulties, and corresponding solution schemes are proposed to overcome these problems.
View less >
View more >The scaled boundary finite element method (SBFEM) is a semi-analytical computational method initially developed in the 1990s. It has been widely applied in the fields of solid mechanics, oceanic, geotechnical, hydraulic, electromagnetic and acoustic engineering problems. Most of the published work on SBFEM has focused on its theoretical development and practical applications, but, so far, no explicit discussion on the numerical stability and accuracy of its solution has been systematically documented. However, for a reliable engineering application, the inherent numerical problems associated with SBFEM solution procedures require thorough analysis in terms of its causes and the corresponding remedies. This study investigates the numerical performance of SBFEM with respect to matrix manipulation techniques and their properties. Some illustrative examples are given to identify reasons for possible numerical difficulties, and corresponding solution schemes are proposed to overcome these problems.
View less >
Journal Title
ANZIAM Journal
Volume
57
Issue
2
Copyright Statement
© 2015 Australian Mathematical Society. Published by Cambridge University Press. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Mathematical sciences
Theoretical and applied mechanics
Engineering