• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of an in-frame deletion of the 6k gene locus from the genome of Ross River virus

    Thumbnail
    View/Open
    TaylorPUB1441.pdf (1.985Mb)
    Author(s)
    Taylor, Adam
    Melton, Julian V
    Herrero, Lara J
    Thaa, Bastian
    Karo-Astover, Liis
    Gage, Peter W
    Nelson, Michelle A
    Sheng, Kuo-Ching
    Lidbury, Brett A
    Ewart, Gary D
    McInerney, Gerald M
    Merits, Andres
    Mahalingam, Suresh
    Griffith University Author(s)
    Mahalingam, Suresh
    Herrero, Lara J.
    Sheng, Kuo-Ching
    Taylor, Adam
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    The alphaviral 6k gene region encodes the two structural proteins 6K protein and, due to a ribosomal frameshift event, the transframe protein (TF). Here, we characterized the role of the 6k proteins in the arthritogenic alphavirus Ross River virus (RRV) in infected cells and in mice, using a novel 6k in-frame deletion mutant. Comprehensive microscopic analysis revealed that the 6k proteins were predominantly localized at the endoplasmic reticulum of RRV-infected cells. RRV virions that lack the 6k proteins 6K and TF [RRV-(Δ6K)] were more vulnerable to changes in pH, and the corresponding virus had increased sensitivity to a ...
    View more >
    The alphaviral 6k gene region encodes the two structural proteins 6K protein and, due to a ribosomal frameshift event, the transframe protein (TF). Here, we characterized the role of the 6k proteins in the arthritogenic alphavirus Ross River virus (RRV) in infected cells and in mice, using a novel 6k in-frame deletion mutant. Comprehensive microscopic analysis revealed that the 6k proteins were predominantly localized at the endoplasmic reticulum of RRV-infected cells. RRV virions that lack the 6k proteins 6K and TF [RRV-(Δ6K)] were more vulnerable to changes in pH, and the corresponding virus had increased sensitivity to a higher temperature. While the 6k deletion did not reduce RRV particle production in BHK-21 cells, it affected virion release from the host cell. Subsequent in vivo studies demonstrated that RRV-(Δ6K) caused a milder disease than wild-type virus, with viral titers being reduced in infected mice. Immunization of mice with RRV-(Δ6K) resulted in a reduced viral load and accelerated viral elimination upon secondary infection with wild-type RRV or another alphavirus, chikungunya virus (CHIKV). Our results show that the 6k proteins may contribute to alphaviral disease manifestations and suggest that manipulation of the 6k gene may be a potential strategy to facilitate viral vaccine development. IMPORTANCE: Arthritogenic alphaviruses, such as chikungunya virus (CHIKV) and Ross River virus (RRV), cause epidemics of debilitating rheumatic disease in areas where they are endemic and can emerge in new regions worldwide. RRV is of considerable medical significance in Australia, where it is the leading cause of arboviral disease. The mechanisms by which alphaviruses persist and cause disease in the host are ill defined. This paper describes the phenotypic properties of an RRV 6k deletion mutant. The absence of the 6k gene reduced virion release from infected cells and also reduced the severity of disease and viral titers in infected mice. Immunization with the mutant virus protected mice against viremia not only upon exposure to RRV but also upon challenge with CHIKV. These findings could lead to the development of safer and more immunogenic alphavirus vectors for vaccine delivery.
    View less >
    Journal Title
    Journal of Virology
    Volume
    90
    Issue
    8
    DOI
    https://doi.org/10.1128/JVI.03192-15
    Copyright Statement
    © 2016 American Society for Microbiology. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Medical Virology
    Biological Sciences
    Agricultural and Veterinary Sciences
    Medical and Health Sciences
    Publication URI
    http://hdl.handle.net/10072/99468
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander