• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Applying the stochastic Galerkin method to epidemic models with uncertainty in the parameters

    Author(s)
    Harman, David B
    Johnston, Peter R
    Griffith University Author(s)
    Harman, David B.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Parameters in modelling are not always known with absolute certainty. In epidemic modelling, this is true of many of the parameters. It is important for this uncertainty to be included in any model. This paper looks at using the stochastic Galerkin method to solve an SIR model with uncertainty in the parameters. The results obtained from the stochastic Galerkin method are then compared with results obtained through Monte Carlo sampling. The computational cost of each method is also compared. It is shown that the stochastic Galerkin method produces good results, even at low order expansions, that are much less computationally ...
    View more >
    Parameters in modelling are not always known with absolute certainty. In epidemic modelling, this is true of many of the parameters. It is important for this uncertainty to be included in any model. This paper looks at using the stochastic Galerkin method to solve an SIR model with uncertainty in the parameters. The results obtained from the stochastic Galerkin method are then compared with results obtained through Monte Carlo sampling. The computational cost of each method is also compared. It is shown that the stochastic Galerkin method produces good results, even at low order expansions, that are much less computationally expensive than Monte Carlo sampling. It is also shown that the stochastic Galerkin method does not always converge and this non-convergence is explored.
    View less >
    Journal Title
    Mathematical Biosciences
    Volume
    277
    DOI
    https://doi.org/10.1016/j.mbs.2016.03.012
    Subject
    Mathematical sciences
    Biological mathematics
    Biological sciences
    Publication URI
    http://hdl.handle.net/10072/99529
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander