Multifunctional Nitrogen-Doped Loofah Sponge Carbon Blocking Layer for High-Performance Rechargeable Lithium Batteries

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Gu, Xingxing
Tong, Chuan-Jia
Rehman, Sarish
Liu, Li-Min
Hou, Yanglong
Zhang, Shanqing
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
Low-cost, long-life, and high-performance lithium batteries not only provide an economically viable power source to electric vehicles and smart electricity grids but also address the issues of the energy shortage and environmental sustainability. Herein, low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge has been synthesized via a simple calcining process and then applied as a multifunctional blocking layer for Li–S, Li–Se, and Li–I2 batteries. As a result of the ultrahigh specific area (2551.06 m2 g–1), high porosity (1.75 cm3 g–1), high conductivity (1170 S m–1), ...
View more >Low-cost, long-life, and high-performance lithium batteries not only provide an economically viable power source to electric vehicles and smart electricity grids but also address the issues of the energy shortage and environmental sustainability. Herein, low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge has been synthesized via a simple calcining process and then applied as a multifunctional blocking layer for Li–S, Li–Se, and Li–I2 batteries. As a result of the ultrahigh specific area (2551.06 m2 g–1), high porosity (1.75 cm3 g–1), high conductivity (1170 S m–1), and heteroatoms doping of N-LSC, the resultant Li–S, Li–Se, and Li–I2 batteries with the N-LSC-900 membrane deliver outstanding electrochemical performance stability in all cases, i.e., high reversible capacities of 623.6 mA h g–1 at 1675 mA g–1 after 500 cycles, 350 mA h g–1 at 1356 mA g–1 after 1000 cycles, and 150 mA h g–1 at 10550 mA g–1 after 5000 cycles, respectively. The successful application to Li–S, Li–Se, and Li–I2 batteries suggests that loofa sponge carbon could play a vital role in modern rechargeable battery industries as a universal, cost-effective, environmentally friendly, and high-performance blocking layer.
View less >
View more >Low-cost, long-life, and high-performance lithium batteries not only provide an economically viable power source to electric vehicles and smart electricity grids but also address the issues of the energy shortage and environmental sustainability. Herein, low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge has been synthesized via a simple calcining process and then applied as a multifunctional blocking layer for Li–S, Li–Se, and Li–I2 batteries. As a result of the ultrahigh specific area (2551.06 m2 g–1), high porosity (1.75 cm3 g–1), high conductivity (1170 S m–1), and heteroatoms doping of N-LSC, the resultant Li–S, Li–Se, and Li–I2 batteries with the N-LSC-900 membrane deliver outstanding electrochemical performance stability in all cases, i.e., high reversible capacities of 623.6 mA h g–1 at 1675 mA g–1 after 500 cycles, 350 mA h g–1 at 1356 mA g–1 after 1000 cycles, and 150 mA h g–1 at 10550 mA g–1 after 5000 cycles, respectively. The successful application to Li–S, Li–Se, and Li–I2 batteries suggests that loofa sponge carbon could play a vital role in modern rechargeable battery industries as a universal, cost-effective, environmentally friendly, and high-performance blocking layer.
View less >
Journal Title
ACS applied materials & interfaces
Volume
8
Issue
25
Copyright Statement
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright 2016 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acsami.6b02378.
Subject
Chemical sciences
Macromolecular and materials chemistry not elsewhere classified
Engineering