• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Automatic Building Footprint Extraction and Regularisation from LIDAR Point Cloud Data

    Thumbnail
    View/Open
    AwrangjebPUB1547.pdf (512.4Kb)
    Author(s)
    Awrangjeb, M
    Lu, G
    Griffith University Author(s)
    Awrangjeb, Mohammad
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    This paper presents a segmentation of LIDAR point cloud data for automatic extraction of building footprint. Using the ground height information from a DEM (Digital Elevation Model), the non-ground points (mainly buildings and trees) are separated from the ground points. Points on walls are removed from the set of non-ground points. The remaining non-ground points are then divided into clusters based on height and local neighbourhood. Planar roof segments are extracted from each cluster of points following a region-growing technique. Planes are initialised using coplanar points as seed points and then grown using plane ...
    View more >
    This paper presents a segmentation of LIDAR point cloud data for automatic extraction of building footprint. Using the ground height information from a DEM (Digital Elevation Model), the non-ground points (mainly buildings and trees) are separated from the ground points. Points on walls are removed from the set of non-ground points. The remaining non-ground points are then divided into clusters based on height and local neighbourhood. Planar roof segments are extracted from each cluster of points following a region-growing technique. Planes are initialised using coplanar points as seed points and then grown using plane compatibility tests. Once all the planar segments are extracted, a rule-based procedure is applied to remove tree planes which are small in size and randomly oriented. The neighbouring planes are then merged to obtain individual building boundaries, which are regularised based on a new feature-based technique. Corners and line-segments are extracted from each boundary and adjusted using the assumption that each short building side is parallel or perpendicular to one or more neighbouring long building sides. Experimental results on five Australian data sets show that the proposed method offers higher correctness rate in building footprint extraction than a state-of-the-art method.
    View less >
    Conference Title
    2014 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2014
    DOI
    https://doi.org/10.1109/DICTA.2014.7008096
    Copyright Statement
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Image Processing
    Computer Vision
    Photogrammetry and Remote Sensing
    Publication URI
    http://hdl.handle.net/10072/99594
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander