• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An improved building detection in complex sites using the LIDAR height variation and point density

    Thumbnail
    View/Open
    SiddiquiPUB1549.pdf (606.5Kb)
    Author(s)
    Siddiqui, Fasahat Ullah
    Teng, Shyh Wei
    Lu, Guojun
    Awrangjeb, Mohammad
    Griffith University Author(s)
    Awrangjeb, Mohammad
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    In this paper, the height variation in LIDAR (Light Detection And Ranging) point cloud data and point density are analyzed to remove the false building detection in highly vegetation and hilly sites. In general, the LIDAR points in a tree area have higher height variations than those in a building area. Moreover, the density of points having similar height values is lower in a tree area than in a building area. The proposed method uses such information as an improvement to a current state-of-the-art building detection method. The qualitative and object-based quantitative analyzes have been performed to verify the effectiveness ...
    View more >
    In this paper, the height variation in LIDAR (Light Detection And Ranging) point cloud data and point density are analyzed to remove the false building detection in highly vegetation and hilly sites. In general, the LIDAR points in a tree area have higher height variations than those in a building area. Moreover, the density of points having similar height values is lower in a tree area than in a building area. The proposed method uses such information as an improvement to a current state-of-the-art building detection method. The qualitative and object-based quantitative analyzes have been performed to verify the effectiveness of the proposed building detection method as compared with a current method. The analysis shows that proposed building detection method successfully reduces false building detection (i.e. trees in high complex sites of Australia and Germany), and the average correctness and quality have been improved by 6.36% and 6.16% respectively.
    View less >
    Conference Title
    PROCEEDINGS OF 2013 28TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ 2013)
    DOI
    https://doi.org/10.1109/IVCNZ.2013.6727060
    Copyright Statement
    © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Image Processing
    Computer Vision
    Photogrammetry and Remote Sensing
    Publication URI
    http://hdl.handle.net/10072/99596
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander