• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Seaweed-Derived Route to Fe2O3 Hollow Nanoparticles/N-Doped Graphene Aerogels with High Lithium Ion Storage Performance

    Author(s)
    Liu, L
    Yang, X
    Lv, C
    Zhu, A
    Zhu, X
    Guo, S
    Chen, C
    Yang, D
    Griffith University Author(s)
    Yang, Dongjiang
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    We developed a nanoscale Kirkendall effect assisted method for simple and scalable synthesis of three-dimensional (3D) Fe2O3 hollow nanoparticles (NPs)/graphene aerogel through the use of waste seaweed biomass as new precursors. The Fe2O3 hollow nanoparticles with an average shell thickness of ∼6 nm are distributed on 3D graphene aerogel, and also act as spacers to make the separation of the neighboring graphene nanosheets. The graphene–Fe2O3 aerogels exhibit high rate capability (550 mA h g–1 at 5 A g –1) and excellent cyclic stability (729 mA h g–1 at 0.1 A g–1 for 300 cycles), outperforming all of the reported Fe2O3/graphene ...
    View more >
    We developed a nanoscale Kirkendall effect assisted method for simple and scalable synthesis of three-dimensional (3D) Fe2O3 hollow nanoparticles (NPs)/graphene aerogel through the use of waste seaweed biomass as new precursors. The Fe2O3 hollow nanoparticles with an average shell thickness of ∼6 nm are distributed on 3D graphene aerogel, and also act as spacers to make the separation of the neighboring graphene nanosheets. The graphene–Fe2O3 aerogels exhibit high rate capability (550 mA h g–1 at 5 A g –1) and excellent cyclic stability (729 mA h g–1 at 0.1 A g–1 for 300 cycles), outperforming all of the reported Fe2O3/graphene hybrid electrodes, due to the hollow structure of the active Fe2O3 NPs and the unique structure of the 3D graphene aerogel framework. The present work represents an important step toward high-level control of high-performance 3D graphene–Fe-based NPs aerogels for maximizing lithium storage with new horizons for important fundamental and technological applications.
    View less >
    Journal Title
    ACS applied materials & interfaces
    Volume
    8
    Issue
    11
    DOI
    https://doi.org/10.1021/acsami.5b12427
    Subject
    Macromolecular and Materials Chemistry not elsewhere classified
    Chemical Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/99748
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander