A nonlinear computational model for regional seismic simulation of tall buildings
Author(s)
Xiong, Chen
Lu, Xinzheng
Guan, Hong
Xu, Zhen
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
To better predict the responses of tall buildings in regional seismic simulation, a nonlinear multiple degree-of-freedom (MDOF) flexural-shear (NMFS) model and its associated parameter calibration method are proposed. The model has such advantages as (1) representation of the nonlinear flexural-shear deformation mode of tall buildings, (2) a high computational efficiency, (3) convenient parameter calibration, and (4) the ability to output the inter-story drift of each story. The characteristics of the nonlinear lateral flexural-shear deformation mode of tall buildings are appropriately considered in the NMFS model. The ...
View more >To better predict the responses of tall buildings in regional seismic simulation, a nonlinear multiple degree-of-freedom (MDOF) flexural-shear (NMFS) model and its associated parameter calibration method are proposed. The model has such advantages as (1) representation of the nonlinear flexural-shear deformation mode of tall buildings, (2) a high computational efficiency, (3) convenient parameter calibration, and (4) the ability to output the inter-story drift of each story. The characteristics of the nonlinear lateral flexural-shear deformation mode of tall buildings are appropriately considered in the NMFS model. The accuracy of the inter-story drift prediction is far superior to the traditional nonlinear MDOF shear (NMS) model. The computing efficiency is also remarkably improved and the speed-up ratio is greater than 30,000 by comparing to the corresponding refined finite element (FE) model. The parameters of the building models can be conveniently and efficiently calibrated using the widely accessible building attribute data from GIS. More specifically, only the descriptive information (i.e., structural height, year of construction, site condition and structural type) of each building is required to perform such calibration. Two representative tall buildings and a residential area with tall buildings are selected to demonstrate the implementation and advantages of the proposed NMFS model. Outcomes of this work are expected to provide a useful reference for future work on regional seismic loss estimations of tall buildings.
View less >
View more >To better predict the responses of tall buildings in regional seismic simulation, a nonlinear multiple degree-of-freedom (MDOF) flexural-shear (NMFS) model and its associated parameter calibration method are proposed. The model has such advantages as (1) representation of the nonlinear flexural-shear deformation mode of tall buildings, (2) a high computational efficiency, (3) convenient parameter calibration, and (4) the ability to output the inter-story drift of each story. The characteristics of the nonlinear lateral flexural-shear deformation mode of tall buildings are appropriately considered in the NMFS model. The accuracy of the inter-story drift prediction is far superior to the traditional nonlinear MDOF shear (NMS) model. The computing efficiency is also remarkably improved and the speed-up ratio is greater than 30,000 by comparing to the corresponding refined finite element (FE) model. The parameters of the building models can be conveniently and efficiently calibrated using the widely accessible building attribute data from GIS. More specifically, only the descriptive information (i.e., structural height, year of construction, site condition and structural type) of each building is required to perform such calibration. Two representative tall buildings and a residential area with tall buildings are selected to demonstrate the implementation and advantages of the proposed NMFS model. Outcomes of this work are expected to provide a useful reference for future work on regional seismic loss estimations of tall buildings.
View less >
Journal Title
Bulletin of Earthquake Engineering
Volume
14
Issue
4
Subject
Geology
Civil engineering
Civil engineering not elsewhere classified