• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Catchment clearing accelerates the infilling of a shallow subtropical bay in east coast Australia

    Author(s)
    Coates-Marnane, Jack
    Olley, Jon
    Burton, Joanne
    Sharma, Ashneel
    Griffith University Author(s)
    Olley, Jon M.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Understanding processes that govern the transport and distribution of terrestrial sediments to and within bays is critical for interpreting the drivers of long-term changes in these ecosystems. On the east coast of Australia increased soil erosion and sediment delivery following extensive land clearing in the contributing catchments, associated with European settlement, is highlighted as a key driver of the decline of numerous nearshore habitats including seagrass meadows and in-shore coral reefs. Here we use optical, radiocarbon and radionuclide dating to estimate mass accumulation rates and type of terrestrial sedimentation ...
    View more >
    Understanding processes that govern the transport and distribution of terrestrial sediments to and within bays is critical for interpreting the drivers of long-term changes in these ecosystems. On the east coast of Australia increased soil erosion and sediment delivery following extensive land clearing in the contributing catchments, associated with European settlement, is highlighted as a key driver of the decline of numerous nearshore habitats including seagrass meadows and in-shore coral reefs. Here we use optical, radiocarbon and radionuclide dating to estimate mass accumulation rates and type of terrestrial sedimentation in central Moreton Bay during the Holocene. We compare the long-term rates of infilling within the central basin with the recent past and show a 3–9 fold increase in sediment accretion over the last 100 years compared to the long term (last ∼ 1500 to 3000 yrs) average. Infilling during the Holocene is not spatially uniform, with preferential deposition occurring within the now submerged palaeochannels of the Brisbane and Pine rivers. We suggest that modern turbidity regimes in Moreton Bay are the result of the compounded effect of both a historical increase in fine sediment supply and a rapid decline in the effective storage capacity of the basin.
    View less >
    Journal Title
    Estuarine, Coastal and Shelf Science
    Volume
    174
    DOI
    https://doi.org/10.1016/j.ecss.2016.03.006
    Subject
    Marine and estuarine ecology (incl. marine ichthyology)
    Publication URI
    http://hdl.handle.net/10072/99954
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander