• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization

    Author(s)
    Mirjalili, Seyedali
    Saremi, Shahrzad
    Mirjalili, Seyed Mohammad
    Coelho, Leandro dos S
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Due to the novelty of the Grey Wolf Optimizer (GWO), there is no study in the literature to design a multi-objective version of this algorithm. This paper proposes a Multi-Objective Grey Wolf Optimizer (MOGWO) in order to optimize problems with multiple objectives for the first time. A fixed-sized external archive is integrated to the GWO for saving and retrieving the Pareto optimal solutions. This archive is then employed to define the social hierarchy and simulate the hunting behavior of grey wolves in multi-objective search spaces. The proposed method is tested on 10 multi-objective benchmark problems and compared with ...
    View more >
    Due to the novelty of the Grey Wolf Optimizer (GWO), there is no study in the literature to design a multi-objective version of this algorithm. This paper proposes a Multi-Objective Grey Wolf Optimizer (MOGWO) in order to optimize problems with multiple objectives for the first time. A fixed-sized external archive is integrated to the GWO for saving and retrieving the Pareto optimal solutions. This archive is then employed to define the social hierarchy and simulate the hunting behavior of grey wolves in multi-objective search spaces. The proposed method is tested on 10 multi-objective benchmark problems and compared with two well-known meta-heuristics: Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D) and Multi-Objective Particle Swarm Optimization (MOPSO). The qualitative and quantitative results show that the proposed algorithm is able to provide very competitive results and outperforms other algorithms. Note that the source codes of MOGWO are publicly available at http://www.alimirjalili.com/GWO.html.
    View less >
    Journal Title
    Expert Systems With Applications
    Volume
    47
    DOI
    https://doi.org/10.1016/j.eswa.2015.10.039
    Subject
    Mathematical sciences
    Other mathematical sciences not elsewhere classified
    Engineering
    Publication URI
    http://hdl.handle.net/10072/99973
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander