• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Go with the flow: the movement behaviour of fish from isolated waterhole refugia during connecting flow events in an intermittent dryland river

    Author(s)
    Marshall, Jonathan C
    Menke, Norbert
    Crook, David A
    Lobegeiger, Jaye S
    Balcombe, Stephen R
    Huey, Joel A
    Fawcett, James H
    Bond, Nick R
    Starkey, Alisa H
    Sternberg, David
    Linke, Simon
    Arthington, Angela H
    Griffith University Author(s)
    Arthington, Angela H.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    1. In many intermittent, dryland rivers, fish are confined to isolated waterholes for much of the year. It is only during brief flow events, which typify the hydrology of these systems, that fish are able to move between waterholes and explore surrounding habitat. Because most of the river channel will dry afterwards, there is a strong advantage for selection of persistent waterholes. 2. Two hundred and fifteen individual fish of three common large-bodied species were tagged in two isolated waterholes in the Moonie River (Queensland, Australia) over 3 years. Their movements were monitored to identify the flow events that ...
    View more >
    1. In many intermittent, dryland rivers, fish are confined to isolated waterholes for much of the year. It is only during brief flow events, which typify the hydrology of these systems, that fish are able to move between waterholes and explore surrounding habitat. Because most of the river channel will dry afterwards, there is a strong advantage for selection of persistent waterholes. 2. Two hundred and fifteen individual fish of three common large-bodied species were tagged in two isolated waterholes in the Moonie River (Queensland, Australia) over 3 years. Their movements were monitored to identify the flow events that trigger fish movement between waterholes, differences in response among species and size classes and refuge selection preferences. 3. Some individuals of all species moved during flow events and others remained within the same waterhole. There was no clear upstream or downstream preference, and most individuals used a reach of up to 20 km, although some individuals ranged over more than 70 km in only several days. Above a threshold flow of 2 m above commence-to-flow level, timing of flow was more important than magnitude, with most movement occurring in response to the first post-winter flow event, independent of its magnitude and duration. Many of the fish that moved displayed philopatry and subsequently returned to their starting waterhole either by the end of a flow event or on subsequent events, suggesting ability to navigate and a preference for more permanent refuge pools. Maximising survival in a highly variable environment provides a plausible mechanism for maintaining these behaviours. 4. Modifications to both flow regime and hydrological connectivity may reduce movement opportunities for fish in intermittent rivers. Our findings show that fish in intermittent systems use networks of waterholes and that management and conservation strategies should aim to maintain movement opportunities at large spatial scales to preserve population resilience.
    View less >
    Journal Title
    Freshwater Biology
    Volume
    61
    Issue
    8
    DOI
    https://doi.org/10.1111/fwb.12707
    Subject
    Environmental sciences
    Biological sciences
    Marine and estuarine ecology (incl. marine ichthyology)
    Publication URI
    http://hdl.handle.net/10072/99978
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander