Impact and Dynamics of Disease in Species Threatened by the Amphibian Chytrid Fungus, Batrachochytrium dendrobatidis
File version
Author(s)
Skerratt, Lee F
Speare, Rick
McCallum, Hamish
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Estimating disease-associated mortality and transmission processes is difficult in free-ranging wildlife but important for understanding disease impacts and dynamics and for informing management decisions. In a capture-mark-recapture study, we used a PCR-based diagnostic test in combination with multistate models to provide the first estimates of disease-associated mortality and detection, infection, and recovery rates for frogs endemically infected with the chytrid fungus Batrachochytrium dendrobatidis (Bd), which causes the pandemic amphibian disease chytridiomycosis. We found that endemic chytridiomycosis was associated with a substantial reduction (approximately 38%) in apparent monthly survival of the threatened rainforest treefrog Litoria pearsoniana despite a long period of coexistence (approximately 30 years); detection rate was not influenced by disease status; improved recovery and reduced infection rates correlated with decreased prevalence, which occurred when temperatures increased; and incorporating changes in individuals' infection status through time with multistate models increased effect size and support (98.6% vs. 71% of total support) for the presence of disease-associated mortality when compared with a Cormack- Jolly-Seber model in which infection status was restricted to the time of first capture. Our results indicate that amphibian populations can face significant ongoing pressure from chytridiomycosis long after epidemics associated with initial Bd invasions subside, an important consideration for the long-term conservation of many amphibian species worldwide. Our findings also improve confidence in estimates of disease prevalence in wild amphibians and provide a general framework for estimating parameters in epidemiological models for chytridiomycosis, an important step toward better understanding and management of this disease.
Journal Title
Conservation Biology
Conference Title
Book Title
Edition
Volume
23
Issue
5
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Environmental sciences
Conservation and biodiversity
Biological sciences
Population ecology
Agricultural, veterinary and food sciences