Modeling of cutting forces in micro end-milling
File version
Author(s)
Jing, Xiubing
Ehmann, Kornel F
Cao, Jian
Li, Huaizhong
Zhang, Dawei
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Accurate modeling and prediction of cutting forces are important for process planning and optimization in micro end-milling process. In order to exactly predict the cutting forces, an innovative uncut chip thickness algorithm is proposed by considering the combination of the exact trochoidal trajectory of the tool tip and the cutting trajectory of all previously passing teeth, tool run-out, minimum chip thickness and the material’s elastic recovery. The proposed uncut chip thickness algorithm also considers the variation of the entry and exit angles caused by tool run-out. To determine the cutting force coefficients, a finite element model (FEM) of orthogonal micro-cutting that considers strain hardening, strain rate sensitivity, thermal softening behavior, and temperature-dependent flow has been established. Based on the results from FEM analysis, the cutting force coefficients are identified and represented by a nonlinear equation of the uncut chip thickness, cutting edge radius and cutting velocity. The identified cutting force coefficients are integrated into a mechanistic cutting force model and used to simulate micro end-milling forces. The simulation results show a very satisfactory agreement with the experimental results.
Journal Title
Journal of Manufacturing Processes
Conference Title
Book Title
Edition
Volume
31
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Manufacturing engineering
Manufacturing engineering not elsewhere classified