Exploring the landscape of Babesia bovis vaccines: progress, challenges, and opportunities

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Santos, John Harvey M
Siddle, Hannah V
Raza, Ali
Stanisic, Danielle I
Good, Michael F
Tabor, Ala E
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2023
Size
File type(s)
Location
Abstract

Bovine babesiosis, caused by different Babesia spp. such as B. bovis, B. bigemina, B. divergens, and B. major, is a global disease that poses a serious threat to livestock production. Babesia bovis infections are associated with severe disease and increased mortality in adult cattle, making it the most virulent agent of bovine babesiosis. Babesia bovis parasites undergo asexual reproduction within bovine red blood cells, followed by sexual reproduction within their tick vectors, which transmit the parasite transovarially. Current control methods, including therapeutic drugs (i.e., imidocarb) have been found to lead to drug resistance. Moreover, changing environmental factors add complexity to efficient parasite control. Understanding the fundamental biology, host immune responses, and host–parasite interactions of Babesia parasites is critical for developing next-generation vaccines to control acute disease and parasite transmission. This systematic review analyzed available research papers on vaccine development and the associated immune responses to B. bovis. We compiled and consolidated the reported vaccine strategies, considering the study design and rationale of each study, to provide a systematic review of knowledge and insights for further research. Thirteen studies published since 2014 (inclusive) represented various vaccine strategies developed against B. bovis such as subunit, live attenuated, and viral vector vaccines. Such strategies incorporated B. bovis proteins or whole live parasites with the latter providing the most effective prophylaxis against bovine babesiosis. Incorporating novel research approaches, such as "omics" will enhance our understanding of parasite vulnerabilities.

Journal Title

Parasites & Vectors

Conference Title
Book Title
Edition
Volume

16

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Item Access Status
Note
Access the data
Related item(s)
Subject

Veterinary sciences

Microbiology

Medical microbiology

Science & Technology

Life Sciences & Biomedicine

Parasitology

Tropical Medicine

Bovine babesiosis

Persistent link to this record
Citation

Santos, JHM; Siddle, HV; Raza, A; Stanisic, DI; Good, MF; Tabor, AE, Exploring the landscape of Babesia bovis vaccines: progress, challenges, and opportunities, Parasites & Vectors, 2023, 16, pp. 274

Collections