In-Vitro Evaluation of Cardiac Energetics and Coronary Flow with Volume Displacement and Rotary Blood Pumps.

No Thumbnail Available
File version
Author(s)
Wu, Eric L
Tansley, Geoff
Fraser, John F
Gregory, Shaun D
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location

Honolulu, USA

License
Abstract

Bridge to recovery with left ventricular assist device (LVAD) support has been more prominent with volume displacement pumps (VDPs) than with rotary blood pumps (RBPs), which may be due to VDPs providing greater ventricular unloading and coronary artery flow. To compare ventricular unloading and coronary flow of VDPs and RBPs in a repeatable environment, a physiologic coronary circulation was added to a pre-existing mock circulatory loop. In this study, a physiologic coronary circulation, mimicking a healthy or diseased auto-regulatory response was implemented in a mock circulatory loop. Using the mock circulation loop, a VDP with original (Björk-Shiley) and then replacement (jellyfish) valves was operated in clinically recommended modes and compared to full and partial assist RBP operating at constant speed and rapid speed modulated modes. The Björk-Shiley VDP resulted in increased pressure-volume area, which resulted in greater coronary artery flow when compared to the improved jellyfish valves. Full assist RBP support reduced left ventricular stroke work, pressure-volume area and coronary flow compared to partial assist, whilst the effect of speed modulation modes was not as significant. Of all LVAD operating modes, the counter-pulsed VDP with jellyfish valves demonstrated the greatest reduction in pressure-volume area and improved coronary flow. This study provides a basis for further investigation into RBP speed modulation profiles to match the improved haemodynamic performance of VDPs.

Journal Title
Conference Title

2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

Book Title
Edition
Volume

2018

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Medical devices

Persistent link to this record
Citation