Combinatorial Chemoenzymatic Synthesis and High-throughput Screening of Sialosides

No Thumbnail Available
File version
Author(s)
Chokhawala, Harshal A.
Huang, Shengshu
Lau, Kam
Yu, Hai
Cheng, Jiansong
Thon, Vireak
Hurtado-Ziola, Nancy
Guerrero, Juan A.
Varki, Ajit
Chen, Xi
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2008
Size
File type(s)
Location
License
Abstract

Although the vital roles of structures containing sialic acid in biomolecular recognition are well documented, limited information is available on how sialic acid structural modifications, sialyl linkages, and the underlying glycan structures affect the binding or the activity of sialic acid-recognizing proteins and related downstream biological processes. A novel combinatorial chemoenzymatic method has been developed for the highly efficient synthesis of biotinylated sialosides containing different sialic acid structures and different underlying glycans in 96-well plates from biotinylated sialyltransferase acceptors and sialic acid precursors. By transferring the reaction mixtures to NeutrAvidin-coated plates and assaying for the yields of enzymatic reactions using lectins recognizing sialyltransferase acceptors but not the sialylated products, the biotinylated sialoside products can be directly used, without purification, for high-throughput screening to quickly identify the ligand specificity of sialic acid-binding proteins. For a proof-of-principle experiment, 72 biotinylated a2,6-linked sialosides were synthesized in 96-well plates from 4 biotinylated sialyltransferase acceptors and 18 sialic acid precursors using a one-pot three-enzyme system. High-throughput screening assays performed in NeutrAvidin-coated microtiter plates show that whereas Sambucus nigra Lectin binds to a2,6-linked sialosides with high promiscuity, human Siglec-2 (CD22) is highly selective for a number of sialic acid structures and the underlying glycans in its sialoside ligands.

Journal Title

ACS Chemical Biology

Conference Title
Book Title
Edition
Volume

3

Issue

9

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.

Item Access Status
Note
Access the data
Related item(s)
Subject

Organic Chemical Synthesis

Chemical Sciences

Biological Sciences

Persistent link to this record
Citation
Collections