PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Chandra, Abel
Sharma, Alok
Dehzangi, Abdollah
Ranganathan, Shoba
Jokhan, Anjeela
Chou, Kuo-Chen
Tsunoda, Tatsuhiko
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
Abstract

The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of interest. Despite a large number of proteins being sequenced, the experimental method for detection of phosphoglycerylated residues remains an expensive, time-consuming and inefficient endeavor in the post-genomic era. Instead, the computational methods are being proposed for accurately predicting phosphoglycerylated lysines. Though a number of predictors are available, performance in detecting phosphoglycerylated lysine residues is still limited. In this paper, we propose a new predictor called PhoglyStruct that utilizes structural information of amino acids alongside a multilayer perceptron classifier for predicting phosphoglycerylated and non-phosphoglycerylated lysine residues. For the experiment, we located phosphoglycerylated and non-phosphoglycerylated lysines in our employed benchmark. We then derived and integrated properties such as accessible surface area, backbone torsion angles, and local structure conformations. PhoglyStruct showed significant improvement in the ability to detect phosphoglycerylated residues from non-phosphoglycerylated ones when compared to previous predictors. The sensitivity, specificity, accuracy, Mathews correlation coefficient and AUC were 0.8542, 0.7597, 0.7834, 0.5468 and 0.8077, respectively. The data and Matlab/Octave software packages are available at https://github.com/abelavit/PhoglyStruct.

Journal Title

SCIENTIFIC REPORTS

Conference Title
Book Title
Edition
Volume

8

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-ative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not per-mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Item Access Status
Note
Access the data
Related item(s)
Subject

Other information and computing sciences not elsewhere classified

Persistent link to this record
Citation
Collections