Review of energy storage systems for vehicles based on technology, environmental impacts, and costs

No Thumbnail Available
File version
Author(s)
Balali, Y
Stegen, S
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2021
Size
File type(s)
Location
License
Abstract

Reduction in fossil fuel dependency has been an issue worldwide for several years. One of the solutions in the transportation sector to reduce the GHG, is the replacement of combustion engine vehicles with electric and hybrid vehicles. Furthermore, to make EVs competitive with ICEV, it is imperative to reduce the relatively high manufacturing cost, increase the range of those vehicles and find solutions to drastically reduce recharge times to a comparable ICEV refuelling time. Battery, Fuel Cell, and Super Capacitor are energy storage solutions implemented in electric vehicles, which possess different advantages and disadvantages. The combination of these Energy Storage Systems, rather than the sole use of one solution, has the potential to meet the required performance results, with regards to high energy density, lower energy consumption and a longer driving range of EVs, to replace ICEVs permanently. However, challenges such as energy management, size and cost of the energy storage systems, are essential concerns and need to be focused on for the production and adoption of EVs. Furthermore, limitations and requirements for changing power train configurations of conventional vehicles stimulate a market for biofuels and synthetic fuels, which also show potential to reduce greenhouse gas emission. This paper provides a review of energy systems for light-duty vehicles and highlights the main characteristics of electric and hybrid vehicles based on power train structure, environmental perspective, and cost. The review provides an overview of different solutions possible, which have the potential to significantly reduce GHG emissions in the transportation sector.

Journal Title

Renewable and Sustainable Energy Reviews

Conference Title
Book Title
Edition
Volume

135

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Engineering

Persistent link to this record
Citation

Balali, Y; Stegen, S, Review of energy storage systems for vehicles based on technology, environmental impacts, and costs, Renewable and Sustainable Energy Reviews, 2021, 135, pp. 110185

Collections