Biogeochemical implications of climate change for tropical rivers and floodplains

Loading...
Thumbnail Image
File version
Author(s)
Hamilton, Stephen K
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2010
Size

177950 bytes

File type(s)

application/pdf

Location
License
Abstract

Large rivers of the tropics, many of which have extensive floodplains and deltas, are important in the delivery of nutrients and sediments to marine environments, in methane emission to the atmosphere and in providing ecosystem services associated with their high biological productivity. These ecosystem functions entail biogeochemical processes that will be influenced by climate change. Evidence for recent climate-driven changes in tropical rivers exists, but remains equivocal. Model projections suggest substantial future climate-driven changes, but they also underscore the complex interactions that control landscape water balances, river discharges and biogeochemical processes. The most important changes are likely to involve: (1) aquatic thermal regimes, with implications for thermal optima of plants and animals, rates of microbially mediated biogeochemical transformations, density stratification of water bodies and dissolved oxygen depletion; (2) hydrological regimes of discharge and floodplain inundation, which determine the ecological structure and function of rivers and floodplains and the extent and seasonality of aquatic environments; and (3) freshwater-seawater gradients where rivers meet oceans, affecting the distribution of marine, brackish and freshwater environments and the biogeochemical processing as river water approaches the coastal zone. In all cases, climate change affects biogeochemical processes in concert with other drivers such as deforestation and other land use changes, dams and other hydrological alterations and water withdrawals. Furthermore, changes in riverine hydrology and biogeochemistry produce potential feedbacks to climate involving biogeochemical processes such as decomposition and methane emission. Future research should seek improved understanding of these changes, and long-term monitoring should be extended to shallow waters of wetlands and floodplains in addition to the larger lakes and rivers that are most studied.

Journal Title

Hydrobiologia

Conference Title
Book Title
Edition
Volume

657

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2010 Springer Netherlands. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com

Item Access Status
Note
Access the data
Related item(s)
Subject

Earth sciences

Environmental sciences

Environmental management not elsewhere classified

Biological sciences

Persistent link to this record
Citation
Collections