Elimination of antibiotic-resistance bacterium and its associated/dissociative blaTEM-1 and aac(3)-II antibiotic-resistance genes in aqueous system via photoelectrocatalytic process
File version
Author(s)
Yin, Hongliang
Li, Guiying
Liu, Hongli
An, Taicheng
Wong, Po Keung
Zhao, Huijun
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The ubiquity of antibiotic-resistance bacteria (ARB) and antibiotic-resistance genes (ARGs) in various environmental matrices is a potential threat to human and ecological health. Therefore, the inactivation of ARB E. coli S1-23 and the elimination of its associated ARGs, blaTEM-1 and aac(3)-II, were investigated using the photoelectrocatalytic (PEC) process. Results indicate that the ARB E. coli S1-23 (1 × 108 cfu mL−1) and its ARGs (extracellular and intracellular) could be fully inactivated within 10 and 16 h PEC treatment, respectively. In contrast, photocatalytic (PC) and electrochemical (EC) treatments displayed no obvious effect; however, ARG-containing DNA extracted from E. coli S1-23, which was used as a model for dissociative naked ARGs, could be completely decomposed within a few minutes through these three treatments. Further analyses, including PCR, AFM and HPLC, proved that the structural integrity and surface topography of naked ARGs are damaged during treatment and can be completely eliminated. Furthermore, there is no generation of cytosine, guanine, adenine or thymine intermediates during the PEC, PC, and EC treatments. This study is the first report to propose the PEC treatment as a promising method for complete decomposition of ARB and ARGs in aqueous systems.
Journal Title
Water Research
Conference Title
Book Title
Edition
Volume
125
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Environmental management not elsewhere classified