Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent
File version
Accepted Manuscript (AM)
Author(s)
Xia, Lunguo
Chen, Zetao
Lv, Fang
Zhu, Huiying
Wei, Fei
Han, Shengwei
Chang, Jiang
Xiao, Yin
Wu, Chengtie
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Although much research has gone into the design of nanomaterials, inflammatory response still impedes the capacity of nanomaterial-induced tissue regeneration. In-situ incorporation of nutrient elements in silica-based biomaterials has emerged as a new option to endow the nanomaterials modulating biological reactions. In this work, europium-doped mesoporous silica nanospheres (Eu-MSNs) were successfully synthesized via a one-pot method. The nanospheres (size of 280–300 nm) possess uniformly spherical morphology and mesoporous structure, and well distributed Eu elements. The nanospheres show distinct fluorescent property at 615 nm for potential bio-labeling. Noticeably, the Eu-MSNs stimulate pro-inflammatory response of macrophages and induce a modulated immune microenvironment, which further activates the osteogenic differentiation of bone marrow stromal cells (BMSCs) as well as angiogenic activity of human umbilical vein endothelial cells (HUVECs). During the process, osteogenesis-related genes (e.g. ALP, OCN, OPN and COL-I) of BMSCs, and angiogenesis-related genes (e.g. CD31, MMP9, VEGFR1/2, and PDGFRα/β) of HUVECs were significantly upregulated by Eu-MSNs modulating immune environment of macrophages. The in vivo study further demonstrated that the Eu-MSNs could not only stimulate osteogenesis by accelerating the new bone formation at critical-sized cranial defect site, but also support the blood vessel formation as well as collagen deposition and re-epithelialization at chronic skin wound sites, showing an improved angiogenesis activity when comparing with MSNs alone. Given the easy handling characteristics and extensive application potential, the results suggest that Eu-MSNs could be used as immunity-modulated osteogenesis/angiogenesis agent for skin and bone regeneration.
Journal Title
Biomaterials
Conference Title
Book Title
Edition
Volume
144
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Item Access Status
Note
Access the data
Related item(s)
Subject
Biomaterials
Science & Technology
Technology
Engineering, Biomedical
Materials Science, Biomaterials
Engineering
Persistent link to this record
Citation
Shi, M; Xia, L; Chen, Z; Lv, F; Zhu, H; Wei, F; Han, S; Chang, J; Xiao, Y; Wu, C, Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent, Biomaterials, 2017, 144, pp. 176-187