A patient network-based machine learning model for disease prediction: The case of type 2 diabetes mellitus
File version
Author(s)
Uddin, Shahadat
Hajati, Farshid
Moni, Mohammad Ali
Khushi, Matloob
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
In recent years, the prevalence of chronic diseases such as type 2 diabetes mellitus (T2DM) has increased, bringing a heavy burden to healthcare systems. While regular monitoring of patients is expensive and impractical, understanding chronic disease progressions and identifying patients at risk of developing comorbidities are crucial. This research used a real-world administrative claim dataset of T2DM to develop an ensemble of innovative patient network and machine learning approach for disease prediction. The healthcare data of 1,028 T2DM patients and 1,028 non-T2DM patients are extracted from the de-identified data to predict the risk of T2DM. The proposed model is based on the ‘patient network’, which represents the underlying relationships among health conditions for a group of patients diagnosed with the same disease using the graph theory. Besides patients’ socio-demographic and behaviour characteristics, the attributes of the ‘patient network’ (e.g., centrality measure) discover patients’ latent features, which are effective in risk prediction. We apply eight machine learning models (Logistic Regression, K-Nearest Neighbours, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, XGBoost and Artificial Neural Network) to the extracted features to predict the chronic disease risk. The extensive experiments show that the proposed framework with machine learning classifiers performance with the Area Under Curve (AUC) ranged from 0.79 to 0.91. The Random Forest model outperformed the other models; whereas, eigenvector centrality and closeness centrality of the network and patient age are the most important features for the model. The outstanding performance of our model provides promising potential applications in healthcare services. Also, we provide strong evidence that the extracted latent features are essential in the disease risk prediction. The proposed approach offers vital insight into chronic disease risk prediction that could benefit healthcare service providers and their stakeholders.
Journal Title
Applied Intelligence
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advanced online version.
Access the data
Related item(s)
Subject
Artificial intelligence
Science & Technology
Computer Science
Disease prediction
Persistent link to this record
Citation
Lu, H; Uddin, S; Hajati, F; Moni, MA; Khushi, M, A patient network-based machine learning model for disease prediction: The case of type 2 diabetes mellitus, Applied Intelligence, 2021