IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling
File version
Author(s)
Dong, Y
Chen, Q
Liu, J
Wang, J
Chen, YPP
Pan, S
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Accumulating evidences have shown that circRNA plays an important role in human diseases. It can be used as potential biomarker for diagnose and treatment of disease. Although some computational methods have been proposed to predict circRNA-disease associations, the performance still need to be improved. In this paper, we propose a new computational model based on Improved Graph convolutional network and Negative Sampling to predict CircRNA-Disease Associations. In our method, it constructs the heterogeneous network based on known circRNA-disease associations. Then, an improved graph convolutional network is designed to obtain the feature vectors of circRNA and disease. Further, the multi-layer perceptron is employed to predict circRNA-disease associations based on the feature vectors of circRNA and disease. In addition, the negative sampling method is employed to reduce the effect of the noise samples, which selects negative samples based on circRNAs expression profile similarity and Gaussian Interaction Profile kernel similarity. The 5-fold cross validation is utilized to evaluate the performance of the method. The results show that IGNSCDA outperforms than other state-of-the-art methods in the prediction performance. Moreover, the case study shows that IGNSCDA is an effective tool for predicting potential circRNA-disease associations.
Journal Title
IEEE/ACM Transactions on Computational Biology and Bioinformatics
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advanced online version.
Access the data
Related item(s)
Subject
Information and computing sciences
Bioinformatics and computational biology
Persistent link to this record
Citation
Lan, W; Dong, Y; Chen, Q; Liu, J; Wang, J; Chen, YPP; Pan, S, IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021