Comprehensive analysis of glulam delamination through finite element modelling considering heat and mass transfer, plasticity and fracture mechanics: a case study using high density hardwood
File version
Version of Record (VoR)
Author(s)
Gilbert, Benoit P
Kumar, Chandan
McGavin, Robert L
Karampour, Hassan
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
With the ongoing emphasis on sustainable and eco-friendly construction, there is a rising demand for high-strength and high-stiffness engineered wood products. This trend presents both opportunities and challenges for the Australia’s hardwood industry, particularly concerning native forest-grown spotted gum (Corymbia citriodora). Glue laminated (glulam) spotted gum beams cannot be confidently commercialised due to the difficulty for its high-density to satisfy the bond integrity criteria (referred to as “delamination test”) for external products in accordance with the Australia and New Zealand Standard AS/NZS 1328.1. For in-depth understanding of the delamination process, an accurate numerical model represents a valuable and time-efficient tool. The aim of this study is to develop and detail such a model, considering heat and mass transfer, drying stresses, plasticity and fracture propagation models, using COMSOL Multiphysics 5.5. The model was validated against a series of wetting and drying experiments on spotted gum glulam, considering both moisture content variation and crack propagation along the gluelines. Results from the validated model showed that delamination is principally due to the tensile stress applied to the gluelines.
Journal Title
European Journal of Wood and Wood Products
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advance online version.
Access the data
Related item(s)
Subject
Forestry sciences
Persistent link to this record
Citation
Lu, P; Gilbert, BP; Kumar, C; McGavin, RL; Karampour, H, Comprehensive analysis of glulam delamination through finite element modelling considering heat and mass transfer, plasticity and fracture mechanics: a case study using high density hardwood, European Journal of Wood and Wood Products, 2024