Development and simulation analysis of real-time yard crane control systems for seaport container transshipment terminals
File version
Author(s)
Wu, Yong
Li, Wenkai
Goh, Mark
de Souza, Robert
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
As more and more container terminals open up all over the world, terminal operators are discovering that they must increase quay crane work rates to remain competitive. In this paper, we develop a real-time yard crane control system and show that a terminal's long-run average quay crane rate depends on the portion of this system that dispatches yard cranes in the storage area in real time. Several real-time yard crane dispatching systems are evaluated by a fully-integrated, discrete event simulation model of a pure transshipment terminal that is designed to reproduce the multi-objective, stochastic, real-time environment at an RTGC-based, multiple-berth facility. Results indicate that yard cranes should prioritize the retrieval of containers from the stacks, rather than the storage of containers into stacks. Also, the yard crane dispatching system should not only consider the trucks already waiting for service in the yard, but also the trucks that are heading towards the yard. The experiments provide the first direct connection in the literature between real-time yard crane control systems and long-run performance at a seaport container terminal. We also make a qualitative comparison between rule-based and look-ahead yard crane dispatching schemes, and discuss deadlocking issues in detail.
Journal Title
OR Spectrum
Conference Title
Book Title
Edition
Volume
31
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Applied mathematics
Numerical and computational mathematics