Cobalt Covalent Doping in MoS2 to Induce Bifunctionality of Overall Water Splitting

No Thumbnail Available
File version
Author(s)
Xiong, Qizhong
Wang, Yun
Liu, Peng-Fei
Zheng, Li-Rong
Wang, Guozhong
Yang, Hua-Gui
Wong, Po-Keung
Zhang, Haimin
Zhao, Huijun
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
License
Abstract

The layer‐structured MoS2 is a typical hydrogen evolution reaction (HER) electrocatalyst but it possesses poor activity for the oxygen evolution reaction (OER). In this work, a cobalt covalent doping approach capable of inducing HER and OER bifunctionality into MoS2 for efficient overall water splitting is reported. The results demonstrate that covalently doping cobalt into MoS2 can lead to dramatically enhanced HER activity while simultaneously inducing remarkable OER activity. The catalyst with optimal cobalt doping density can readily achieve HER and OER onset potentials of −0.02 and 1.45 V (vs reversible hydrogen electrode (RHE)) in 1.0 m KOH. Importantly, it can deliver high current densities of 10, 100, and 200 mA cm−2 at low HER and OER overpotentials of 48, 132, 165 mV and 260, 350, 390 mV, respectively. The reported catalyst activation approach can be adapted for bifunctionalization of other transition metal dichalcogenides.

Journal Title

Advanced Materials

Conference Title
Book Title
Edition
Volume

30

Issue

29

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Physical sciences

Chemical sciences

Other chemical sciences not elsewhere classified

Engineering

Persistent link to this record
Citation
Collections