Synergetic Coupling of Redox-Active Sites on Organic Electrode Material for Robust and High-Performance Sodium-Ion Storage
File version
Version of Record (VoR)
Author(s)
Wu, Z
Wang, S
Li, M
Chen, H
Qian, S
Zheng, M
Wang, Y
Li, S
Qiu, J
Zhang, S
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Organic electrode materials (OEMs), valued for their sustainability and structural tunability, have been attracting increasing attention for wide application in sodium-ion batteries (SIBs) and other rechargeable batteries. However, most OEMs are plagued with insufficient specific capacity or poor cycling stability. Therefore, it′s imperative to enhance their specific capacity and cycling stability through molecular design. Herein, we designed and synthesized a heteroaromatic molecule 2,3,8,9,14,15-hexanol hexaazatrinaphthalene (HATN-6OH) by the synergetic coupling of catechol (the precursor of ortho-quinone)/ortho-quinone functional groups and HATN conjugated core structures. The abundance of catechol/ortho-quinone and imine redox-active moieties delivers a high specific capacity of nine-electron transfer for SIBs. Most notably, the π–π interactions and intermolecular hydrogen bond forces among HATN-6OH molecules secure the stable long-term cycling performance of SIBs. Consequently, the as-prepared HATN-6OH electrode exhibited a high specific capacity (554 mAh g−1 at 0.1 A g−1), excellent rate capability (202 mAh g−1 at 10 A g−1), and stable long-term cycling performance (73 % after 3000 cycles at 10 A g−1) in SIBs. Additionally, the nine-electron transfer mechanism is confirmed by systematic density functional theory (DFT) calculation, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Raman analysis. The achievement of the synergetic coupling of the redox-active sites on OEMs could be an important key to the enhancement of SIBs and other metal-ion batteries.
Journal Title
Angewandte Chemie International Edition
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
ARC
Grant identifier(s)
DP210103266
Rights Statement
Rights Statement
© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advanced online version.
Access the data
Related item(s)
Subject
Chemical sciences
Catechol ortho-Quinone
Hydrogen Bond
Synergetic Coupling
π-π Interaction
Persistent link to this record
Citation
Yang, P; Wu, Z; Wang, S; Li, M; Chen, H; Qian, S; Zheng, M; Wang, Y; Li, S; Qiu, J; Zhang, S, Synergetic Coupling of Redox-Active Sites on Organic Electrode Material for Robust and High-Performance Sodium-Ion Storage, Angewandte Chemie International Edition, 2023, pp. e202311460