Nerve repair: toward a sutureless approach

No Thumbnail Available
File version
Author(s)
Barton, Matthew J
Morley, John W
Stoodley, Marcus A
Lauto, Antonio
Mahns, David A
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2014
Size
File type(s)
Location
License
Abstract

Peripheral nerve repair for complete section injuries employ reconstructive techniques that invariably require sutures in their application. Sutures are unable to seal the nerve, thus incapable of preventing leakage of important intraneural fluids from the regenerating nerve. Furthermore, sutures are technically demanding to apply for direct repairs and often induce detrimental scarring that impedes healing and functional recovery. To overcome these limitations, biocompatible and biodegradable glues have been used to seal and repair peripheral nerves. Although creating a sufficient seal, they can lack flexibility and present infection risks or cytotoxicity. Other adhesive biomaterials have recently emerged into practice that are usually based on proteins such as albumin and collagen or polysaccharides like chitosan. These adhesives form their union to nerve tissue by either photothermal (tissue welding) or photochemical (tissue bonding) activation with laser light. These biomaterial adhesives offer significant advantages over sutures, such as their capacity to unite and seal the epineurium, ease of application, reduced invasiveness and add the potential for drug delivery in situ to facilitate regeneration. This paper reviews a number of different peripheral nerve repair (or reconstructive) techniques currently used clinically and in experimental procedures for nerve injuries with or without tissue deficit.

Journal Title

Neurosurgical Review

Conference Title
Book Title
Edition
Volume

37

Issue

4

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Clinical sciences

Clinical sciences not elsewhere classified

Neurosciences

Neurosciences not elsewhere classified

Persistent link to this record
Citation
Collections